#pragma once #include "BsPrerequisitesUtil.h" #include "BsDegree.h" #include "BsRadian.h" namespace BansheeEngine { /** @addtogroup Math * @{ */ /** Utility class providing common scalar math operations. */ class BS_UTILITY_EXPORT Math { public: static Radian acos(float val); static Radian asin(float val); static Radian atan(float val) { return Radian(std::atan(val)); } static Radian atan2(float y, float x) { return Radian(std::atan2(y,x)); } static float cos(const Radian& val) { return (float)std::cos(val.valueRadians()); } static float cos(float val) { return (float)std::cos(val); } static float sin(const Radian& val) { return (float)std::sin(val.valueRadians()); } static float sin(float val) { return (float)std::sin(val); } static float tan(const Radian& val) { return (float)std::tan(val.valueRadians()); } static float tan(float val) { return (float)std::tan(val); } static float sqrt(float val) { return (float)std::sqrt(val); } static Radian sqrt(const Radian& val) { return Radian(std::sqrt(val.valueRadians())); } static Degree sqrt(const Degree& val) { return Degree(std::sqrt(val.valueDegrees())); } static float invSqrt(float val); static float sqr(float val) { return val*val; } static float pow(float base, float exponent) { return (float)std::pow(base, exponent); } static float exp(float val) { return (float)std::exp(val); } static float log(float val) { return (float)std::log(val); } static float log2(float val) { return (float)(std::log(val)/LOG2); } static float logN(float base, float val) { return (float)(std::log(val)/std::log(base)); } static float sign(float val); static Radian sign(const Radian& val) { return Radian(sign(val.valueRadians())); } static Degree sign(const Degree& val) { return Degree(sign(val.valueDegrees())); } static float abs(float val) { return float(std::fabs(val)); } static Degree abs(const Degree& val) { return Degree(std::fabs(val.valueDegrees())); } static Radian abs(const Radian& val) { return Radian(std::fabs(val.valueRadians())); } static float ceil(float val) { return (float)std::ceil(val); } static int ceilToInt(float val) { return (int)std::ceil(val); } static float round(float val) { return (float)std::floor(val + 0.5f); } static int roundToInt(float val) { return (int)std::floor(val + 0.5f); } static float floor(float val) { return (float)std::floor(val); } static int floorToInt(float val) { return (int)std::floor(val); } /** Clamp a value within an inclusive range. */ template static T clamp(T val, T minval, T maxval) { assert (minval <= maxval && "Invalid clamp range"); return std::max(std::min(val, maxval), minval); } /** Clamp a value within an inclusive range [0..1]. */ template static T clamp01(T val) { return std::max(std::min(val, (T)1), (T)0); } /** Checks is the specified value a power of two. Only works on integer values. */ template static bool isPow2(T val) { return (val & (val - 1)) == 0; } static bool isNaN(float f) { return f != f; } /** Compare two floats, using tolerance for inaccuracies. */ static bool approxEquals(float a, float b, float tolerance = std::numeric_limits::epsilon()); /** Compare two doubles, using tolerance for inaccuracies. */ static bool approxEquals(double a, double b, double tolerance = std::numeric_limits::epsilon()); /** Compare two 2D vectors, using tolerance for inaccuracies. */ static bool approxEquals(const Vector2& a, const Vector2& b, float tolerance = std::numeric_limits::epsilon()); /** Compare two 3D vectors, using tolerance for inaccuracies. */ static bool approxEquals(const Vector3& a, const Vector3& b, float tolerance = std::numeric_limits::epsilon()); /** Compare two 4D vectors, using tolerance for inaccuracies. */ static bool approxEquals(const Vector4& a, const Vector4& b, float tolerance = std::numeric_limits::epsilon()); /** Calculates the tangent space vector for a given set of positions / texture coords. */ static Vector3 calculateTriTangent(const Vector3& position1, const Vector3& position2, const Vector3& position3, float u1, float v1, float u2, float v2, float u3, float v3); /************************************************************************/ /* TRIG APPROXIMATIONS */ /************************************************************************/ /** * Sine function approximation. * * @param[in] val Angle in range [0, pi/2]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastSin0(const Radian& val) { return (float)fastASin0(val.valueRadians()); } /** * Sine function approximation. * * @param[in] val Angle in range [0, pi/2]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastSin0(float val); /** * Sine function approximation. * * @param[in] val Angle in range [0, pi/2]. * * @note * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastSin0. */ static float fastSin1(const Radian& val) { return (float)fastASin1(val.valueRadians()); } /** * Sine function approximation. * * @param[in] val Angle in range [0, pi/2]. * * @note * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastSin0. */ static float fastSin1(float val); /** * Cosine function approximation. * * @param[in] val Angle in range [0, pi/2]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastCos0(const Radian& val) { return (float)fastACos0(val.valueRadians()); } /** * Cosine function approximation. * * @param[in] val Angle in range [0, pi/2]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastCos0(float val); /** * Cosine function approximation. * * @param[in] val Angle in range [0, pi/2]. * * @note * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastCos0. */ static float fastCos1(const Radian& val) { return (float)fastACos1(val.valueRadians()); } /** * Cosine function approximation. * * @param[in] val Angle in range [0, pi/2]. * * @note * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastCos0. */ static float fastCos1(float val); /** * Tangent function approximation. * * @param[in] val Angle in range [0, pi/4]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastTan0(const Radian& val) { return (float)fastATan0(val.valueRadians()); } /** * Tangent function approximation. * * @param[in] val Angle in range [0, pi/4]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastTan0(float val); /** * Tangent function approximation. * * @param[in] val Angle in range [0, pi/4]. * * @note * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastTan0. */ static float fastTan1(const Radian& val) { return (float)fastATan1(val.valueRadians()); } /** * Tangent function approximation. * * @param[in] val Angle in range [0, pi/4]. * * @note * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastTan0. */ static float fastTan1(float val); /** * Inverse sine function approximation. * * @param[in] val Angle in range [0, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastASin0(const Radian& val) { return (float)fastASin0(val.valueRadians()); } /** * Inverse sine function approximation. * * @param[in] val Angle in range [0, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastASin0(float val); /** * Inverse sine function approximation. * * @param[in] val Angle in range [0, 1]. * * @note * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastASin0. */ static float fastASin1(const Radian& val) { return (float)fastASin1(val.valueRadians()); } /** * Inverse sine function approximation. * * @param[in] val Angle in range [0, 1]. * * @note * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastASin0. */ static float fastASin1(float val); /** * Inverse cosine function approximation. * * @param[in] val Angle in range [0, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastACos0(const Radian& val) { return (float)fastACos0(val.valueRadians()); } /** * Inverse cosine function approximation. * * @param[in] val Angle in range [0, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastACos0(float val); /** * Inverse cosine function approximation. * * @param[in] val Angle in range [0, 1]. * * @note * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastACos0. */ static float fastACos1(const Radian& val) { return (float)fastACos1(val.valueRadians()); } /** * Inverse cosine function approximation. * * @param[in] val Angle in range [0, 1]. * * @note * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastACos0. */ static float fastACos1(float val); /** * Inverse tangent function approximation. * * @param[in] val Angle in range [-1, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastATan0(const Radian& val) { return (float)fastATan0(val.valueRadians()); } /** * Inverse tangent function approximation. * * @param[in] val Angle in range [-1, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastATan0(float val); /** * Inverse tangent function approximation. * * @param[in] val Angle in range [-1, 1]. * * @note * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastATan0. */ static float fastATan1(const Radian& val) { return (float)fastATan1(val.valueRadians()); } /** * Inverse tangent function approximation. * * @param[in] val Angle in range [-1, 1]. * * @note * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastATan0. */ static float fastATan1(float val); /** * Interpolates between min and max. Returned value is in [0, 1] range where min = 0, max = 1 and 0.5 is * the average of min and max. */ template static float lerp01(T val, T min, T max) { return clamp01((val - min) / std::max(max - min, 0.0001F)); } /** * Solves the linear equation with the parameters A, B. Returns number of roots found and the roots themselves will * be output in the @p roots array. * * @param[out] roots Must be at least size of 1. * * @note Only returns real roots. */ template static UINT32 solveLinear(T A, T B, T* roots) { if (!approxEquals(A, (T)0)) { roots[0] = -B / A; return 1; } roots[0] = 0.0f; return 1; } /** * Solves the quadratic equation with the parameters A, B, C. Returns number of roots found and the roots themselves * will be output in the @p roots array. * * @param[out] roots Must be at least size of 2. * * @note Only returns real roots. */ template static UINT32 solveQuadratic(T A, T B, T C, T* roots) { if (!approxEquals(A, (T)0)) { T p = B / (2 * A); T q = C / A; T D = p * p - q; if (!approxEquals(D, (T)0)) { if (D < (T)0) return 0; T sqrtD = sqrt(D); roots[0] = sqrtD - p; roots[1] = -sqrtD - p; return 2; } else { roots[0] = -p; roots[1] = -p; return 1; } } else { return solveLinear(B, C, roots); } } /** * Solves the cubic equation with the parameters A, B, C, D. Returns number of roots found and the roots themselves * will be output in the @p roots array. * * @param[out] roots Must be at least size of 3. * * @note Only returns real roots. */ template static UINT32 solveCubic(T A, T B, T C, T D, T* roots) { static const T THIRD = (1 / (T)3); T invA = 1 / A; A = B * invA; B = C * invA; C = D * invA; T sqA = A * A; T p = THIRD * (-THIRD * sqA + B); T q = ((T)0.5) * ((2 / (T)27) * A * sqA - THIRD * A * B + C); T cbp = p * p * p; D = q * q + cbp; UINT32 numRoots = 0; if (!approxEquals(D, (T)0)) { if (D < 0.0) { T phi = THIRD * ::acos(-q / sqrt(-cbp)); T t = 2 * sqrt(-p); roots[0] = t * cos(phi); roots[1] = -t * cos(phi + PI * THIRD); roots[2] = -t * cos(phi - PI * THIRD); numRoots = 3; } else { T sqrtD = sqrt(D); T u = cbrt(sqrtD + fabs(q)); if (q > (T)0) roots[0] = -u + p / u; else roots[0] = u - p / u; numRoots = 1; } } else { if (!approxEquals(q, (T)0)) { T u = cbrt(-q); roots[0] = 2 * u; roots[1] = -u; numRoots = 2; } else { roots[0] = 0.0f; numRoots = 1; } } T sub = THIRD * A; for (UINT32 i = 0; i < numRoots; i++) roots[i] -= sub; return numRoots; } /** * Solves the quartic equation with the parameters A, B, C, D, E. Returns number of roots found and the roots * themselves will be output in the @p roots array. * * @param[out] roots Must be at least size of 4. * * @note Only returns real roots. */ template static UINT32 solveQuartic(T A, T B, T C, T D, T E, T* roots) { T invA = 1 / A; A = B * invA; B = C * invA; C = D * invA; D = E * invA; T sqA = A*A; T p = -(3 / (T)8) * sqA + B; T q = (1 / (T)8) * sqA * A - (T)0.5 * A * B + C; T r = -(3 / (T)256) * sqA * sqA + (1 / (T)16) * sqA * B - (1 / (T)4) * A * C + D; UINT32 numRoots = 0; if (!approxEquals(r, (T)0)) { T cubicA = 1; T cubicB = -(T)0.5 * p ; T cubicC = -r; T cubicD = (T)0.5 * r * p - (1 / (T)8) * q * q; solveCubic(cubicA, cubicB, cubicC, cubicD, roots); T z = roots[0]; T u = z * z - r; T v = 2 * z - p; if (approxEquals(u, T(0))) u = 0; else if (u > 0) u = sqrt(u); else return 0; if (approxEquals(v, T(0))) v = 0; else if (v > 0) v = sqrt(v); else return 0; T quadraticA = 1; T quadraticB = q < 0 ? -v : v; T quadraticC = z - u; numRoots = solveQuadratic(quadraticA, quadraticB, quadraticC, roots); quadraticA = 1; quadraticB = q < 0 ? v : -v; quadraticC = z + u; numRoots += solveQuadratic(quadraticA, quadraticB, quadraticC, roots + numRoots); } else { numRoots = solveCubic(q, p, (T)0, (T)1, roots); roots[numRoots++] = 0; } T sub = (1/(T)4) * A; for (UINT32 i = 0; i < numRoots; i++) roots[i] -= sub; return numRoots; } static const float POS_INFINITY; static const float NEG_INFINITY; static const float PI; static const float TWO_PI; static const float HALF_PI; static const float DEG2RAD; static const float RAD2DEG; static const float LOG2; }; /** @} */ }