/* ----------------------------------------------------------------------------- This source file is part of OGRE (Object-oriented Graphics Rendering Engine) For the latest info, see http://www.ogre3d.org/ Copyright (c) 2000-2011 Torus Knot Software Ltd Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------------- */ #include "CmTimer.h" #include "CmBitwise.h" using namespace CamelotEngine; //------------------------------------------------------------------------- Timer::Timer() : mTimerMask( 0 ) { reset(); } //------------------------------------------------------------------------- Timer::~Timer() { } //------------------------------------------------------------------------- bool Timer::setOption( const String & key, const void * val ) { if ( key == "QueryAffinityMask" ) { // Telling timer what core to use for a timer read DWORD newTimerMask = * static_cast < const DWORD * > ( val ); // Get the current process core mask DWORD_PTR procMask; DWORD_PTR sysMask; GetProcessAffinityMask(GetCurrentProcess(), &procMask, &sysMask); // If new mask is 0, then set to default behavior, otherwise check // to make sure new timer core mask overlaps with process core mask // and that new timer core mask is a power of 2 (i.e. a single core) if( ( newTimerMask == 0 ) || ( ( ( newTimerMask & procMask ) != 0 ) && Bitwise::isPO2( newTimerMask ) ) ) { mTimerMask = newTimerMask; return true; } } return false; } //------------------------------------------------------------------------- void Timer::reset() { // Get the current process core mask DWORD_PTR procMask; DWORD_PTR sysMask; GetProcessAffinityMask(GetCurrentProcess(), &procMask, &sysMask); // If procMask is 0, consider there is only one core available // (using 0 as procMask will cause an infinite loop below) if (procMask == 0) procMask = 1; // Find the lowest core that this process uses if( mTimerMask == 0 ) { mTimerMask = 1; while( ( mTimerMask & procMask ) == 0 ) { mTimerMask <<= 1; } } HANDLE thread = GetCurrentThread(); // Set affinity to the first core DWORD_PTR oldMask = SetThreadAffinityMask(thread, mTimerMask); // Get the constant frequency QueryPerformanceFrequency(&mFrequency); // Query the timer QueryPerformanceCounter(&mStartTime); mStartTick = GetTickCount(); // Reset affinity SetThreadAffinityMask(thread, oldMask); mLastTime = 0; mZeroClock = clock(); } //------------------------------------------------------------------------- unsigned long Timer::getMilliseconds() { LARGE_INTEGER curTime; HANDLE thread = GetCurrentThread(); // Set affinity to the first core DWORD_PTR oldMask = SetThreadAffinityMask(thread, mTimerMask); // Query the timer QueryPerformanceCounter(&curTime); // Reset affinity SetThreadAffinityMask(thread, oldMask); LONGLONG newTime = curTime.QuadPart - mStartTime.QuadPart; // scale by 1000 for milliseconds unsigned long newTicks = (unsigned long) (1000 * newTime / mFrequency.QuadPart); // detect and compensate for performance counter leaps // (surprisingly common, see Microsoft KB: Q274323) unsigned long check = GetTickCount() - mStartTick; signed long msecOff = (signed long)(newTicks - check); if (msecOff < -100 || msecOff > 100) { // We must keep the timer running forward :) LONGLONG adjust = (std::min)(msecOff * mFrequency.QuadPart / 1000, newTime - mLastTime); mStartTime.QuadPart += adjust; newTime -= adjust; // Re-calculate milliseconds newTicks = (unsigned long) (1000 * newTime / mFrequency.QuadPart); } // Record last time for adjust mLastTime = newTime; return newTicks; } //------------------------------------------------------------------------- unsigned long Timer::getMicroseconds() { LARGE_INTEGER curTime; HANDLE thread = GetCurrentThread(); // Set affinity to the first core DWORD_PTR oldMask = SetThreadAffinityMask(thread, mTimerMask); // Query the timer QueryPerformanceCounter(&curTime); // Reset affinity SetThreadAffinityMask(thread, oldMask); LONGLONG newTime = curTime.QuadPart - mStartTime.QuadPart; // get milliseconds to check against GetTickCount unsigned long newTicks = (unsigned long) (1000 * newTime / mFrequency.QuadPart); // detect and compensate for performance counter leaps // (surprisingly common, see Microsoft KB: Q274323) unsigned long check = GetTickCount() - mStartTick; signed long msecOff = (signed long)(newTicks - check); if (msecOff < -100 || msecOff > 100) { // We must keep the timer running forward :) LONGLONG adjust = (std::min)(msecOff * mFrequency.QuadPart / 1000, newTime - mLastTime); mStartTime.QuadPart += adjust; newTime -= adjust; } // Record last time for adjust mLastTime = newTime; // scale by 1000000 for microseconds unsigned long newMicro = (unsigned long) (1000000 * newTime / mFrequency.QuadPart); return newMicro; } //------------------------------------------------------------------------- unsigned long Timer::getMillisecondsCPU() { clock_t newClock = clock(); return (unsigned long)( (float)( newClock - mZeroClock ) / ( (float)CLOCKS_PER_SEC / 1000.0 ) ) ; } //------------------------------------------------------------------------- unsigned long Timer::getMicrosecondsCPU() { clock_t newClock = clock(); return (unsigned long)( (float)( newClock - mZeroClock ) / ( (float)CLOCKS_PER_SEC / 1000000.0 ) ) ; }