/* ----------------------------------------------------------------------------- This source file is part of OGRE (Object-oriented Graphics Rendering Engine) For the latest info, see http://www.ogre3d.org/ Copyright (c) 2000-2011 Torus Knot Software Ltd Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------------- */ #ifndef __Vector4_H__ #define __Vector4_H__ #include "CmPrerequisitesUtil.h" #include "CmVector3.h" namespace CamelotFramework { /** \addtogroup Core * @{ */ /** \addtogroup Math * @{ */ /** 4-dimensional homogeneous vector. */ class CM_UTILITY_EXPORT Vector4 { public: float x, y, z, w; public: inline Vector4() { } inline Vector4( const float fX, const float fY, const float fZ, const float fW ) : x( fX ), y( fY ), z( fZ ), w( fW) { } inline explicit Vector4( const float afCoordinate[4] ) : x( afCoordinate[0] ), y( afCoordinate[1] ), z( afCoordinate[2] ), w( afCoordinate[3] ) { } inline explicit Vector4( const int afCoordinate[4] ) { x = (float)afCoordinate[0]; y = (float)afCoordinate[1]; z = (float)afCoordinate[2]; w = (float)afCoordinate[3]; } inline explicit Vector4( float* const r ) : x( r[0] ), y( r[1] ), z( r[2] ), w( r[3] ) { } inline explicit Vector4( const float scaler ) : x( scaler ) , y( scaler ) , z( scaler ) , w( scaler ) { } inline explicit Vector4(const Vector3& rhs) : x(rhs.x), y(rhs.y), z(rhs.z), w(1.0f) { } /** Exchange the contents of this vector with another. */ inline void swap(Vector4& other) { std::swap(x, other.x); std::swap(y, other.y); std::swap(z, other.z); std::swap(w, other.w); } inline float operator [] ( const size_t i ) const { assert( i < 4 ); return *(&x+i); } inline float& operator [] ( const size_t i ) { assert( i < 4 ); return *(&x+i); } /// Pointer accessor for direct copying inline float* ptr() { return &x; } /// Pointer accessor for direct copying inline const float* ptr() const { return &x; } /** Assigns the value of the other vector. @param rkVector The other vector */ inline Vector4& operator = ( const Vector4& rkVector ) { x = rkVector.x; y = rkVector.y; z = rkVector.z; w = rkVector.w; return *this; } inline Vector4& operator = ( const float fScalar) { x = fScalar; y = fScalar; z = fScalar; w = fScalar; return *this; } inline bool operator == ( const Vector4& rkVector ) const { return ( x == rkVector.x && y == rkVector.y && z == rkVector.z && w == rkVector.w ); } inline bool operator != ( const Vector4& rkVector ) const { return ( x != rkVector.x || y != rkVector.y || z != rkVector.z || w != rkVector.w ); } inline Vector4& operator = (const Vector3& rhs) { x = rhs.x; y = rhs.y; z = rhs.z; w = 1.0f; return *this; } // arithmetic operations inline Vector4 operator + ( const Vector4& rkVector ) const { return Vector4( x + rkVector.x, y + rkVector.y, z + rkVector.z, w + rkVector.w); } inline Vector4 operator - ( const Vector4& rkVector ) const { return Vector4( x - rkVector.x, y - rkVector.y, z - rkVector.z, w - rkVector.w); } inline Vector4 operator * ( const float fScalar ) const { return Vector4( x * fScalar, y * fScalar, z * fScalar, w * fScalar); } inline Vector4 operator * ( const Vector4& rhs) const { return Vector4( rhs.x * x, rhs.y * y, rhs.z * z, rhs.w * w); } inline Vector4 operator / ( const float fScalar ) const { assert( fScalar != 0.0 ); float fInv = 1.0f / fScalar; return Vector4( x * fInv, y * fInv, z * fInv, w * fInv); } inline Vector4 operator / ( const Vector4& rhs) const { return Vector4( x / rhs.x, y / rhs.y, z / rhs.z, w / rhs.w); } inline const Vector4& operator + () const { return *this; } inline Vector4 operator - () const { return Vector4(-x, -y, -z, -w); } inline friend Vector4 operator * ( const float fScalar, const Vector4& rkVector ) { return Vector4( fScalar * rkVector.x, fScalar * rkVector.y, fScalar * rkVector.z, fScalar * rkVector.w); } inline friend Vector4 operator / ( const float fScalar, const Vector4& rkVector ) { return Vector4( fScalar / rkVector.x, fScalar / rkVector.y, fScalar / rkVector.z, fScalar / rkVector.w); } inline friend Vector4 operator + (const Vector4& lhs, const float rhs) { return Vector4( lhs.x + rhs, lhs.y + rhs, lhs.z + rhs, lhs.w + rhs); } inline friend Vector4 operator + (const float lhs, const Vector4& rhs) { return Vector4( lhs + rhs.x, lhs + rhs.y, lhs + rhs.z, lhs + rhs.w); } inline friend Vector4 operator - (const Vector4& lhs, float rhs) { return Vector4( lhs.x - rhs, lhs.y - rhs, lhs.z - rhs, lhs.w - rhs); } inline friend Vector4 operator - (const float lhs, const Vector4& rhs) { return Vector4( lhs - rhs.x, lhs - rhs.y, lhs - rhs.z, lhs - rhs.w); } // arithmetic updates inline Vector4& operator += ( const Vector4& rkVector ) { x += rkVector.x; y += rkVector.y; z += rkVector.z; w += rkVector.w; return *this; } inline Vector4& operator -= ( const Vector4& rkVector ) { x -= rkVector.x; y -= rkVector.y; z -= rkVector.z; w -= rkVector.w; return *this; } inline Vector4& operator *= ( const float fScalar ) { x *= fScalar; y *= fScalar; z *= fScalar; w *= fScalar; return *this; } inline Vector4& operator += ( const float fScalar ) { x += fScalar; y += fScalar; z += fScalar; w += fScalar; return *this; } inline Vector4& operator -= ( const float fScalar ) { x -= fScalar; y -= fScalar; z -= fScalar; w -= fScalar; return *this; } inline Vector4& operator *= ( const Vector4& rkVector ) { x *= rkVector.x; y *= rkVector.y; z *= rkVector.z; w *= rkVector.w; return *this; } inline Vector4& operator /= ( const float fScalar ) { assert( fScalar != 0.0 ); float fInv = 1.0f / fScalar; x *= fInv; y *= fInv; z *= fInv; w *= fInv; return *this; } inline Vector4& operator /= ( const Vector4& rkVector ) { x /= rkVector.x; y /= rkVector.y; z /= rkVector.z; w /= rkVector.w; return *this; } /** Calculates the dot (scalar) product of this vector with another. @param vec Vector with which to calculate the dot product (together with this one). @returns A float representing the dot product value. */ inline float dotProduct(const Vector4& vec) const { return x * vec.x + y * vec.y + z * vec.z + w * vec.w; } /// Check whether this vector contains valid values inline bool isNaN() const { return Math::isNaN(x) || Math::isNaN(y) || Math::isNaN(z) || Math::isNaN(w); } /** Function for writing to a stream. */ inline CM_UTILITY_EXPORT friend std::ostream& operator << ( std::ostream& o, const Vector4& v ) { o << "Vector4(" << v.x << ", " << v.y << ", " << v.z << ", " << v.w << ")"; return o; } // special static const Vector4 ZERO; }; /** @} */ /** @} */ CM_ALLOW_MEMCPY_SERIALIZATION(Vector4); } #endif