/* ----------------------------------------------------------------------------- This source file is part of OGRE (Object-oriented Graphics Rendering Engine) For the latest info, see http://www.ogre3d.org/ Copyright (c) 2000-2011 Torus Knot Software Ltd Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------------- */ // NOTE THAT THIS FILE IS BASED ON MATERIAL FROM: // Geometric Tools, LLC // Copyright (c) 1998-2010 // Distributed under the Boost Software License, Version 1.0. // http://www.boost.org/LICENSE_1_0.txt // http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt #include "CmQuaternion.h" #include "CmMath.h" #include "CmMatrix3.h" #include "CmVector3.h" namespace CamelotFramework { const float Quaternion::ms_fEpsilon = 1e-03f; const Quaternion Quaternion::ZERO(0.0,0.0,0.0,0.0); const Quaternion Quaternion::IDENTITY(1.0,0.0,0.0,0.0); //----------------------------------------------------------------------- void Quaternion::FromRotationMatrix (const Matrix3& kRot) { // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes // article "Quaternion Calculus and Fast Animation". float fTrace = kRot[0][0]+kRot[1][1]+kRot[2][2]; float fRoot; if ( fTrace > 0.0 ) { // |w| > 1/2, may as well choose w > 1/2 fRoot = Math::Sqrt(fTrace + 1.0f); // 2w w = 0.5f*fRoot; fRoot = 0.5f/fRoot; // 1/(4w) x = (kRot[2][1]-kRot[1][2])*fRoot; y = (kRot[0][2]-kRot[2][0])*fRoot; z = (kRot[1][0]-kRot[0][1])*fRoot; } else { // |w| <= 1/2 static size_t s_iNext[3] = { 1, 2, 0 }; size_t i = 0; if ( kRot[1][1] > kRot[0][0] ) i = 1; if ( kRot[2][2] > kRot[i][i] ) i = 2; size_t j = s_iNext[i]; size_t k = s_iNext[j]; fRoot = Math::Sqrt(kRot[i][i]-kRot[j][j]-kRot[k][k] + 1.0f); float* apkQuat[3] = { &x, &y, &z }; *apkQuat[i] = 0.5f*fRoot; fRoot = 0.5f/fRoot; w = (kRot[k][j]-kRot[j][k])*fRoot; *apkQuat[j] = (kRot[j][i]+kRot[i][j])*fRoot; *apkQuat[k] = (kRot[k][i]+kRot[i][k])*fRoot; } normalize(); } //----------------------------------------------------------------------- void Quaternion::ToRotationMatrix (Matrix3& kRot) const { float fTx = x+x; float fTy = y+y; float fTz = z+z; float fTwx = fTx*w; float fTwy = fTy*w; float fTwz = fTz*w; float fTxx = fTx*x; float fTxy = fTy*x; float fTxz = fTz*x; float fTyy = fTy*y; float fTyz = fTz*y; float fTzz = fTz*z; kRot[0][0] = 1.0f-(fTyy+fTzz); kRot[0][1] = fTxy-fTwz; kRot[0][2] = fTxz+fTwy; kRot[1][0] = fTxy+fTwz; kRot[1][1] = 1.0f-(fTxx+fTzz); kRot[1][2] = fTyz-fTwx; kRot[2][0] = fTxz-fTwy; kRot[2][1] = fTyz+fTwx; kRot[2][2] = 1.0f-(fTxx+fTyy); } //----------------------------------------------------------------------- void Quaternion::FromAngleAxis (const Radian& rfAngle, const Vector3& rkAxis) { // assert: axis[] is unit length // // The quaternion representing the rotation is // q = cos(A/2)+sin(A/2)*(x*i+y*j+z*k) Radian fHalfAngle ( 0.5*rfAngle ); float fSin = Math::Sin(fHalfAngle); w = Math::Cos(fHalfAngle); x = fSin*rkAxis.x; y = fSin*rkAxis.y; z = fSin*rkAxis.z; } //----------------------------------------------------------------------- void Quaternion::ToAngleAxis (Radian& rfAngle, Vector3& rkAxis) const { // The quaternion representing the rotation is // q = cos(A/2)+sin(A/2)*(x*i+y*j+z*k) float fSqrLength = x*x+y*y+z*z; if ( fSqrLength > 0.0 ) { rfAngle = 2.0*Math::ACos(w); float fInvLength = Math::InvSqrt(fSqrLength); rkAxis.x = x*fInvLength; rkAxis.y = y*fInvLength; rkAxis.z = z*fInvLength; } else { // angle is 0 (mod 2*pi), so any axis will do rfAngle = Radian(0.0); rkAxis.x = 1.0; rkAxis.y = 0.0; rkAxis.z = 0.0; } } //----------------------------------------------------------------------- void Quaternion::FromAxes (const Vector3* akAxis) { Matrix3 kRot; for (size_t iCol = 0; iCol < 3; iCol++) { kRot[0][iCol] = akAxis[iCol].x; kRot[1][iCol] = akAxis[iCol].y; kRot[2][iCol] = akAxis[iCol].z; } FromRotationMatrix(kRot); } //----------------------------------------------------------------------- void Quaternion::FromAxes (const Vector3& xaxis, const Vector3& yaxis, const Vector3& zaxis) { Matrix3 kRot; kRot[0][0] = xaxis.x; kRot[1][0] = xaxis.y; kRot[2][0] = xaxis.z; kRot[0][1] = yaxis.x; kRot[1][1] = yaxis.y; kRot[2][1] = yaxis.z; kRot[0][2] = zaxis.x; kRot[1][2] = zaxis.y; kRot[2][2] = zaxis.z; FromRotationMatrix(kRot); } //----------------------------------------------------------------------- void Quaternion::ToAxes (Vector3* akAxis) const { Matrix3 kRot; ToRotationMatrix(kRot); for (size_t iCol = 0; iCol < 3; iCol++) { akAxis[iCol].x = kRot[0][iCol]; akAxis[iCol].y = kRot[1][iCol]; akAxis[iCol].z = kRot[2][iCol]; } } //----------------------------------------------------------------------- Vector3 Quaternion::xAxis(void) const { //float fTx = 2.0*x; float fTy = 2.0f*y; float fTz = 2.0f*z; float fTwy = fTy*w; float fTwz = fTz*w; float fTxy = fTy*x; float fTxz = fTz*x; float fTyy = fTy*y; float fTzz = fTz*z; return Vector3(1.0f-(fTyy+fTzz), fTxy+fTwz, fTxz-fTwy); } //----------------------------------------------------------------------- Vector3 Quaternion::yAxis(void) const { float fTx = 2.0f*x; float fTy = 2.0f*y; float fTz = 2.0f*z; float fTwx = fTx*w; float fTwz = fTz*w; float fTxx = fTx*x; float fTxy = fTy*x; float fTyz = fTz*y; float fTzz = fTz*z; return Vector3(fTxy-fTwz, 1.0f-(fTxx+fTzz), fTyz+fTwx); } //----------------------------------------------------------------------- Vector3 Quaternion::zAxis(void) const { float fTx = 2.0f*x; float fTy = 2.0f*y; float fTz = 2.0f*z; float fTwx = fTx*w; float fTwy = fTy*w; float fTxx = fTx*x; float fTxz = fTz*x; float fTyy = fTy*y; float fTyz = fTz*y; return Vector3(fTxz+fTwy, fTyz-fTwx, 1.0f-(fTxx+fTyy)); } //----------------------------------------------------------------------- void Quaternion::ToAxes (Vector3& xaxis, Vector3& yaxis, Vector3& zaxis) const { Matrix3 kRot; ToRotationMatrix(kRot); xaxis.x = kRot[0][0]; xaxis.y = kRot[1][0]; xaxis.z = kRot[2][0]; yaxis.x = kRot[0][1]; yaxis.y = kRot[1][1]; yaxis.z = kRot[2][1]; zaxis.x = kRot[0][2]; zaxis.y = kRot[1][2]; zaxis.z = kRot[2][2]; } //----------------------------------------------------------------------- Quaternion Quaternion::operator+ (const Quaternion& rkQ) const { return Quaternion(w+rkQ.w,x+rkQ.x,y+rkQ.y,z+rkQ.z); } //----------------------------------------------------------------------- Quaternion Quaternion::operator- (const Quaternion& rkQ) const { return Quaternion(w-rkQ.w,x-rkQ.x,y-rkQ.y,z-rkQ.z); } //----------------------------------------------------------------------- Quaternion Quaternion::operator* (const Quaternion& rkQ) const { // NOTE: Multiplication is not generally commutative, so in most // cases p*q != q*p. return Quaternion ( w * rkQ.w - x * rkQ.x - y * rkQ.y - z * rkQ.z, w * rkQ.x + x * rkQ.w + y * rkQ.z - z * rkQ.y, w * rkQ.y + y * rkQ.w + z * rkQ.x - x * rkQ.z, w * rkQ.z + z * rkQ.w + x * rkQ.y - y * rkQ.x ); } //----------------------------------------------------------------------- Quaternion Quaternion::operator* (float fScalar) const { return Quaternion(fScalar*w,fScalar*x,fScalar*y,fScalar*z); } //----------------------------------------------------------------------- Quaternion operator* (float fScalar, const Quaternion& rkQ) { return Quaternion(fScalar*rkQ.w,fScalar*rkQ.x,fScalar*rkQ.y, fScalar*rkQ.z); } //----------------------------------------------------------------------- Quaternion Quaternion::operator- () const { return Quaternion(-w,-x,-y,-z); } //----------------------------------------------------------------------- float Quaternion::Dot (const Quaternion& rkQ) const { return w*rkQ.w+x*rkQ.x+y*rkQ.y+z*rkQ.z; } //----------------------------------------------------------------------- float Quaternion::Norm () const { return w*w+x*x+y*y+z*z; } //----------------------------------------------------------------------- Quaternion Quaternion::Inverse () const { float fNorm = w*w+x*x+y*y+z*z; if ( fNorm > 0.0 ) { float fInvNorm = 1.0f/fNorm; return Quaternion(w*fInvNorm,-x*fInvNorm,-y*fInvNorm,-z*fInvNorm); } else { // return an invalid result to flag the error return ZERO; } } //----------------------------------------------------------------------- Quaternion Quaternion::UnitInverse () const { // assert: 'this' is unit length return Quaternion(w,-x,-y,-z); } //----------------------------------------------------------------------- Quaternion Quaternion::Exp () const { // If q = A*(x*i+y*j+z*k) where (x,y,z) is unit length, then // exp(q) = cos(A)+sin(A)*(x*i+y*j+z*k). If sin(A) is near zero, // use exp(q) = cos(A)+A*(x*i+y*j+z*k) since A/sin(A) has limit 1. Radian fAngle ( Math::Sqrt(x*x+y*y+z*z) ); float fSin = Math::Sin(fAngle); Quaternion kResult; kResult.w = Math::Cos(fAngle); if ( Math::Abs(fSin) >= ms_fEpsilon ) { float fCoeff = fSin/(fAngle.valueRadians()); kResult.x = fCoeff*x; kResult.y = fCoeff*y; kResult.z = fCoeff*z; } else { kResult.x = x; kResult.y = y; kResult.z = z; } return kResult; } //----------------------------------------------------------------------- Quaternion Quaternion::Log () const { // If q = cos(A)+sin(A)*(x*i+y*j+z*k) where (x,y,z) is unit length, then // log(q) = A*(x*i+y*j+z*k). If sin(A) is near zero, use log(q) = // sin(A)*(x*i+y*j+z*k) since sin(A)/A has limit 1. Quaternion kResult; kResult.w = 0.0; if ( Math::Abs(w) < 1.0 ) { Radian fAngle ( Math::ACos(w) ); float fSin = Math::Sin(fAngle); if ( Math::Abs(fSin) >= ms_fEpsilon ) { float fCoeff = fAngle.valueRadians()/fSin; kResult.x = fCoeff*x; kResult.y = fCoeff*y; kResult.z = fCoeff*z; return kResult; } } kResult.x = x; kResult.y = y; kResult.z = z; return kResult; } //----------------------------------------------------------------------- Vector3 Quaternion::operator* (const Vector3& v) const { // nVidia SDK implementation Vector3 uv, uuv; Vector3 qvec(x, y, z); uv = qvec.crossProduct(v); uuv = qvec.crossProduct(uv); uv *= (2.0f * w); uuv *= 2.0f; return v + uv + uuv; } //----------------------------------------------------------------------- bool Quaternion::equals(const Quaternion& rhs, const Radian& tolerance) const { float fCos = Dot(rhs); Radian angle = Math::ACos(fCos); return (Math::Abs(angle.valueRadians()) <= tolerance.valueRadians()) || Math::RealEqual(angle.valueRadians(), Math::PI, tolerance.valueRadians()); } //----------------------------------------------------------------------- Quaternion Quaternion::Slerp (float fT, const Quaternion& rkP, const Quaternion& rkQ, bool shortestPath) { float fCos = rkP.Dot(rkQ); Quaternion rkT; // Do we need to invert rotation? if (fCos < 0.0f && shortestPath) { fCos = -fCos; rkT = -rkQ; } else { rkT = rkQ; } if (Math::Abs(fCos) < 1 - ms_fEpsilon) { // Standard case (slerp) float fSin = Math::Sqrt(1 - Math::Sqr(fCos)); Radian fAngle = Math::ATan2(fSin, fCos); float fInvSin = 1.0f / fSin; float fCoeff0 = Math::Sin((1.0f - fT) * fAngle) * fInvSin; float fCoeff1 = Math::Sin(fT * fAngle) * fInvSin; return fCoeff0 * rkP + fCoeff1 * rkT; } else { // There are two situations: // 1. "rkP" and "rkQ" are very close (fCos ~= +1), so we can do a linear // interpolation safely. // 2. "rkP" and "rkQ" are almost inverse of each other (fCos ~= -1), there // are an infinite number of possibilities interpolation. but we haven't // have method to fix this case, so just use linear interpolation here. Quaternion t = (1.0f - fT) * rkP + fT * rkT; // taking the complement requires renormalisation t.normalize(); return t; } } //----------------------------------------------------------------------- Quaternion Quaternion::SlerpExtraSpins (float fT, const Quaternion& rkP, const Quaternion& rkQ, int iExtraSpins) { float fCos = rkP.Dot(rkQ); Radian fAngle ( Math::ACos(fCos) ); if ( Math::Abs(fAngle.valueRadians()) < ms_fEpsilon ) return rkP; float fSin = Math::Sin(fAngle); Radian fPhase ( Math::PI*iExtraSpins*fT ); float fInvSin = 1.0f/fSin; float fCoeff0 = Math::Sin((1.0f-fT)*fAngle - fPhase)*fInvSin; float fCoeff1 = Math::Sin(fT*fAngle + fPhase)*fInvSin; return fCoeff0*rkP + fCoeff1*rkQ; } //----------------------------------------------------------------------- void Quaternion::Intermediate (const Quaternion& rkQ0, const Quaternion& rkQ1, const Quaternion& rkQ2, Quaternion& rkA, Quaternion& rkB) { // assert: q0, q1, q2 are unit quaternions Quaternion kQ0inv = rkQ0.UnitInverse(); Quaternion kQ1inv = rkQ1.UnitInverse(); Quaternion rkP0 = kQ0inv*rkQ1; Quaternion rkP1 = kQ1inv*rkQ2; Quaternion kArg = 0.25*(rkP0.Log()-rkP1.Log()); Quaternion kMinusArg = -kArg; rkA = rkQ1*kArg.Exp(); rkB = rkQ1*kMinusArg.Exp(); } //----------------------------------------------------------------------- Quaternion Quaternion::Squad (float fT, const Quaternion& rkP, const Quaternion& rkA, const Quaternion& rkB, const Quaternion& rkQ, bool shortestPath) { float fSlerpT = 2.0f*fT*(1.0f-fT); Quaternion kSlerpP = Slerp(fT, rkP, rkQ, shortestPath); Quaternion kSlerpQ = Slerp(fT, rkA, rkB); return Slerp(fSlerpT, kSlerpP ,kSlerpQ); } //----------------------------------------------------------------------- float Quaternion::normalize(void) { float len = Norm(); float factor = 1.0f / Math::Sqrt(len); *this = *this * factor; return len; } //----------------------------------------------------------------------- Radian Quaternion::getRoll(bool reprojectAxis) const { if (reprojectAxis) { // roll = atan2(localx.y, localx.x) // pick parts of xAxis() implementation that we need // float fTx = 2.0*x; float fTy = 2.0f*y; float fTz = 2.0f*z; float fTwz = fTz*w; float fTxy = fTy*x; float fTyy = fTy*y; float fTzz = fTz*z; // Vector3(1.0-(fTyy+fTzz), fTxy+fTwz, fTxz-fTwy); return Radian(Math::ATan2(fTxy+fTwz, 1.0f-(fTyy+fTzz))); } else { return Radian(Math::ATan2(2*(x*y + w*z), w*w + x*x - y*y - z*z)); } } //----------------------------------------------------------------------- Radian Quaternion::getPitch(bool reprojectAxis) const { if (reprojectAxis) { // pitch = atan2(localy.z, localy.y) // pick parts of yAxis() implementation that we need float fTx = 2.0f*x; // float fTy = 2.0f*y; float fTz = 2.0f*z; float fTwx = fTx*w; float fTxx = fTx*x; float fTyz = fTz*y; float fTzz = fTz*z; // Vector3(fTxy-fTwz, 1.0-(fTxx+fTzz), fTyz+fTwx); return Radian(Math::ATan2(fTyz+fTwx, 1.0f-(fTxx+fTzz))); } else { // internal version return Radian(Math::ATan2(2*(y*z + w*x), w*w - x*x - y*y + z*z)); } } //----------------------------------------------------------------------- Radian Quaternion::getYaw(bool reprojectAxis) const { if (reprojectAxis) { // yaw = atan2(localz.x, localz.z) // pick parts of zAxis() implementation that we need float fTx = 2.0f*x; float fTy = 2.0f*y; float fTz = 2.0f*z; float fTwy = fTy*w; float fTxx = fTx*x; float fTxz = fTz*x; float fTyy = fTy*y; // Vector3(fTxz+fTwy, fTyz-fTwx, 1.0-(fTxx+fTyy)); return Radian(Math::ATan2(fTxz+fTwy, 1.0f-(fTxx+fTyy))); } else { // internal version return Radian(Math::ASin(-2*(x*z - w*y))); } } //----------------------------------------------------------------------- Quaternion Quaternion::nlerp(float fT, const Quaternion& rkP, const Quaternion& rkQ, bool shortestPath) { Quaternion result; float fCos = rkP.Dot(rkQ); if (fCos < 0.0f && shortestPath) { result = rkP + fT * ((-rkQ) - rkP); } else { result = rkP + fT * (rkQ - rkP); } result.normalize(); return result; } }