#include "BsRenderBeast.h" #include "BsCCamera.h" #include "BsSceneObject.h" #include "BsSceneManager.h" #include "BsCRenderable.h" #include "BsMaterial.h" #include "BsMesh.h" #include "BsPass.h" #include "BsBlendState.h" #include "BsRasterizerState.h" #include "BsDepthStencilState.h" #include "BsSamplerState.h" #include "BsCoreApplication.h" #include "BsViewport.h" #include "BsRenderTarget.h" #include "BsRenderQueue.h" #include "BsGUIManager.h" #include "BsCoreThread.h" #include "BsGpuParams.h" #include "BsProfilerCPU.h" #include "BsShader.h" #include "BsTechnique.h" #include "BsHardwareBufferManager.h" #include "BsGpuParamBlockBuffer.h" #include "BsShader.h" #include "BsStaticRenderableHandler.h" #include "BsTime.h" #include "BsRenderableElement.h" #include "BsFrameAlloc.h" #include "BsCoreObjectManager.h" #include "BsRenderBeastOptions.h" #include "BsSamplerOverrides.h" #include "BsLight.h" #include "BsRenderTexturePool.h" #include "BsRenderTargets.h" #include "BsRendererUtility.h" using namespace std::placeholders; namespace BansheeEngine { RenderBeast::RenderBeast() :mOptions(bs_shared_ptr_new()), mOptionsDirty(true), mStaticHandler(nullptr), mDefaultMaterial(nullptr), mPointLightMat(nullptr), mDirLightMat(nullptr) { } const StringID& RenderBeast::getName() const { static StringID name = "RenderBeast"; return name; } void RenderBeast::initialize() { CoreRenderer::initialize(); CoreThread::instance().queueCommand(std::bind(&RenderBeast::initializeCore, this)); } void RenderBeast::destroy() { CoreRenderer::destroy(); gCoreAccessor().queueCommand(std::bind(&RenderBeast::destroyCore, this)); gCoreAccessor().submitToCoreThread(true); } void RenderBeast::initializeCore() { RendererUtility::startUp(); mCoreOptions = bs_shared_ptr_new(); mStaticHandler = bs_new(); mDefaultMaterial = bs_new(); mPointLightMat = bs_new(); mDirLightMat = bs_new(); RenderTexturePool::startUp(); } void RenderBeast::destroyCore() { if (mStaticHandler != nullptr) bs_delete(mStaticHandler); mRenderTargets.clear(); mCameraData.clear(); mRenderables.clear(); RenderTexturePool::shutDown(); bs_delete(mDefaultMaterial); bs_delete(mPointLightMat); bs_delete(mDirLightMat); RendererUtility::shutDown(); assert(mSamplerOverrides.empty()); } void RenderBeast::_notifyRenderableAdded(RenderableCore* renderable) { UINT32 renderableId = (UINT32)mRenderables.size(); renderable->setRendererId(renderableId); mRenderables.push_back(RenderableData()); mRenderableShaderData.push_back(RenderableShaderData()); mWorldBounds.push_back(renderable->getBounds()); RenderableData& renderableData = mRenderables.back(); renderableData.renderable = renderable; RenderableShaderData& shaderData = mRenderableShaderData.back(); shaderData.worldTransform = renderable->getTransform(); shaderData.invWorldTransform = shaderData.worldTransform.inverseAffine(); shaderData.worldNoScaleTransform = renderable->getTransformNoScale(); shaderData.invWorldNoScaleTransform = shaderData.worldNoScaleTransform.inverseAffine(); shaderData.worldDeterminantSign = shaderData.worldTransform.determinant3x3() >= 0.0f ? 1.0f : -1.0f; if (renderable->getRenderableType() == RenType_LitTextured) renderableData.controller = mStaticHandler; else renderableData.controller = nullptr; SPtr mesh = renderable->getMesh(); if (mesh != nullptr) { const MeshProperties& meshProps = mesh->getProperties(); SPtr vertexDecl = mesh->getVertexData()->vertexDeclaration; for (UINT32 i = 0; i < meshProps.getNumSubMeshes(); i++) { renderableData.elements.push_back(BeastRenderableElement()); BeastRenderableElement& renElement = renderableData.elements.back(); renElement.mesh = mesh; renElement.subMesh = meshProps.getSubMesh(i); renElement.renderableId = renderableId; renElement.material = renderable->getMaterial(i); if (renElement.material == nullptr) renElement.material = renderable->getMaterial(0); if (renElement.material != nullptr && renElement.material->getShader() == nullptr) renElement.material = nullptr; // Validate mesh <-> shader vertex bindings if (renElement.material != nullptr) { UINT32 numPasses = renElement.material->getNumPasses(); for (UINT32 j = 0; j < numPasses; j++) { SPtr pass = renElement.material->getPass(j); SPtr shaderDecl = pass->getVertexProgram()->getInputDeclaration(); if (!vertexDecl->isCompatible(shaderDecl)) { Vector missingElements = vertexDecl->getMissingElements(shaderDecl); StringStream wrnStream; wrnStream << "Provided mesh is missing required vertex attributes to render with the provided shader. Missing elements: " << std::endl; for (auto& entry : missingElements) wrnStream << "\t" << toString(entry.getSemantic()) << entry.getSemanticIdx() << std::endl; LOGWRN(wrnStream.str()); break; } } } // If no material use the default material if (renElement.material == nullptr) renElement.material = mDefaultMaterial->getMaterial(); auto iterFind = mSamplerOverrides.find(renElement.material); if (iterFind != mSamplerOverrides.end()) { renElement.samplerOverrides = iterFind->second; iterFind->second->refCount++; } else { MaterialSamplerOverrides* samplerOverrides = SamplerOverrideUtility::generateSamplerOverrides(renElement.material, mCoreOptions); mSamplerOverrides[renElement.material] = samplerOverrides; renElement.samplerOverrides = samplerOverrides; samplerOverrides->refCount++; } if (renderableData.controller != nullptr) renderableData.controller->initializeRenderElem(renElement); } } } void RenderBeast::_notifyRenderableRemoved(RenderableCore* renderable) { UINT32 renderableId = renderable->getRendererId(); RenderableCore* lastRenerable = mRenderables.back().renderable; UINT32 lastRenderableId = lastRenerable->getRendererId(); Vector& elements = mRenderables[renderableId].elements; for (auto& element : elements) { auto iterFind = mSamplerOverrides.find(element.material); assert(iterFind != mSamplerOverrides.end()); MaterialSamplerOverrides* samplerOverrides = iterFind->second; samplerOverrides->refCount--; if (samplerOverrides->refCount == 0) { SamplerOverrideUtility::destroySamplerOverrides(samplerOverrides); mSamplerOverrides.erase(iterFind); } element.samplerOverrides = nullptr; } if (renderableId != lastRenderableId) { // Swap current last element with the one we want to erase std::swap(mRenderables[renderableId], mRenderables[lastRenderableId]); std::swap(mWorldBounds[renderableId], mWorldBounds[lastRenderableId]); std::swap(mRenderableShaderData[renderableId], mRenderableShaderData[lastRenderableId]); lastRenerable->setRendererId(renderableId); Vector& lastRenderableElements = mRenderables[renderableId].elements; for (auto& element : elements) element.renderableId = renderableId; } // Last element is the one we want to erase mRenderables.erase(mRenderables.end() - 1); mWorldBounds.erase(mWorldBounds.end() - 1); mRenderableShaderData.erase(mRenderableShaderData.end() - 1); } void RenderBeast::_notifyRenderableUpdated(RenderableCore* renderable) { UINT32 renderableId = renderable->getRendererId(); RenderableShaderData& shaderData = mRenderableShaderData[renderableId]; shaderData.worldTransform = renderable->getTransform(); shaderData.invWorldTransform = shaderData.worldTransform.inverseAffine(); shaderData.worldNoScaleTransform = renderable->getTransformNoScale(); shaderData.invWorldNoScaleTransform = shaderData.worldNoScaleTransform.inverseAffine(); shaderData.worldDeterminantSign = shaderData.worldTransform.determinant3x3() >= 0.0f ? 1.0f : -1.0f; mWorldBounds[renderableId] = renderable->getBounds(); } void RenderBeast::_notifyLightAdded(LightCore* light) { if (light->getType() == LightType::Directional) { UINT32 lightId = (UINT32)mDirectionalLights.size(); light->setRendererId(lightId); mDirectionalLights.push_back(LightData()); LightData& lightData = mDirectionalLights.back(); lightData.internal = light; } else { UINT32 lightId = (UINT32)mPointLights.size(); light->setRendererId(lightId); mPointLights.push_back(LightData()); mLightWorldBounds.push_back(light->getBounds()); LightData& lightData = mPointLights.back(); lightData.internal = light; } } void RenderBeast::_notifyLightUpdated(LightCore* light) { UINT32 lightId = light->getRendererId(); if (light->getType() != LightType::Directional) mLightWorldBounds[lightId] = light->getBounds(); } void RenderBeast::_notifyLightRemoved(LightCore* light) { UINT32 lightId = light->getRendererId(); if (light->getType() == LightType::Directional) { LightCore* lastLight = mDirectionalLights.back().internal; UINT32 lastLightId = lastLight->getRendererId(); if (lightId != lastLightId) { // Swap current last element with the one we want to erase std::swap(mDirectionalLights[lightId], mDirectionalLights[lastLightId]); lastLight->setRendererId(lightId); } // Last element is the one we want to erase mDirectionalLights.erase(mDirectionalLights.end() - 1); } else { LightCore* lastLight = mPointLights.back().internal; UINT32 lastLightId = lastLight->getRendererId(); if (lightId != lastLightId) { // Swap current last element with the one we want to erase std::swap(mPointLights[lightId], mPointLights[lastLightId]); std::swap(mLightWorldBounds[lightId], mLightWorldBounds[lastLightId]); lastLight->setRendererId(lightId); } // Last element is the one we want to erase mPointLights.erase(mPointLights.end() - 1); mLightWorldBounds.erase(mLightWorldBounds.end() - 1); } } void RenderBeast::_notifyCameraAdded(const CameraCore* camera) { SPtr renderTarget = camera->getViewport()->getTarget(); if (renderTarget == nullptr) return; CameraData& camData = mCameraData[camera]; camData.opaqueQueue = bs_shared_ptr_new(mCoreOptions->stateReductionMode); StateReduction transparentStateReduction = mCoreOptions->stateReductionMode; if (transparentStateReduction == StateReduction::Material) transparentStateReduction = StateReduction::Distance; // Transparent object MUST be sorted by distance camData.transparentQueue = bs_shared_ptr_new(transparentStateReduction); // Register in render target list auto findIter = std::find_if(mRenderTargets.begin(), mRenderTargets.end(), [&](const RenderTargetData& x) { return x.target == renderTarget; }); if (findIter != mRenderTargets.end()) { findIter->cameras.push_back(camera); } else { mRenderTargets.push_back(RenderTargetData()); RenderTargetData& renderTargetData = mRenderTargets.back(); renderTargetData.target = renderTarget; renderTargetData.cameras.push_back(camera); } // Sort render targets based on priority auto cameraComparer = [&](const CameraCore* a, const CameraCore* b) { return a->getPriority() > b->getPriority(); }; auto renderTargetInfoComparer = [&](const RenderTargetData& a, const RenderTargetData& b) { return a.target->getProperties().getPriority() > b.target->getProperties().getPriority(); }; std::sort(begin(mRenderTargets), end(mRenderTargets), renderTargetInfoComparer); for (auto& camerasPerTarget : mRenderTargets) { Vector& cameras = camerasPerTarget.cameras; std::sort(begin(cameras), end(cameras), cameraComparer); } } void RenderBeast::_notifyCameraRemoved(const CameraCore* camera) { mCameraData.erase(camera); // Remove from render target list for (auto iterTarget = mRenderTargets.begin(); iterTarget != mRenderTargets.end(); ++iterTarget) { RenderTargetData& target = *iterTarget; for (auto iterCam = target.cameras.begin(); iterCam != target.cameras.end(); ++iterCam) { if (camera == *iterCam) { target.cameras.erase(iterCam); break; } } if (target.cameras.empty()) { mRenderTargets.erase(iterTarget); break; } } } void RenderBeast::setOptions(const SPtr& options) { mOptions = std::static_pointer_cast(options); mOptionsDirty = true; } SPtr RenderBeast::getOptions() const { return mOptions; } void RenderBeast::renderAll() { // Sync all dirty sim thread CoreObject data to core thread CoreObjectManager::instance().syncToCore(gCoreAccessor()); if (mOptionsDirty) { gCoreAccessor().queueCommand(std::bind(&RenderBeast::syncRenderOptions, this, *mOptions)); mOptionsDirty = false; } gCoreAccessor().queueCommand(std::bind(&RenderBeast::renderAllCore, this, gTime().getTime())); } void RenderBeast::syncRenderOptions(const RenderBeastOptions& options) { bool filteringChanged = mCoreOptions->filtering != options.filtering; if (options.filtering == RenderBeastFiltering::Anisotropic) filteringChanged |= mCoreOptions->anisotropyMax != options.anisotropyMax; if (filteringChanged) refreshSamplerOverrides(true); *mCoreOptions = options; for (auto& cameraData : mCameraData) { cameraData.second.opaqueQueue->setStateReduction(mCoreOptions->stateReductionMode); StateReduction transparentStateReduction = mCoreOptions->stateReductionMode; if (transparentStateReduction == StateReduction::Material) transparentStateReduction = StateReduction::Distance; // Transparent object MUST be sorted by distance cameraData.second.transparentQueue->setStateReduction(transparentStateReduction); } } void RenderBeast::renderAllCore(float time) { THROW_IF_NOT_CORE_THREAD; gProfilerCPU().beginSample("renderAllCore"); // Note: I'm iterating over all sampler states every frame. If this ends up being a performance // issue consider handling this internally in MaterialCore which can only do it when sampler states // are actually modified after sync refreshSamplerOverrides(); // Update global per-frame hardware buffers mStaticHandler->updatePerFrameBuffers(time); // Generate render queues per camera for (auto& cameraData : mCameraData) { const CameraCore* camera = cameraData.first; determineVisible(*camera); } // Render everything, target by target for (auto& renderTargetData : mRenderTargets) { SPtr target = renderTargetData.target; Vector& cameras = renderTargetData.cameras; RenderAPICore::instance().beginFrame(); UINT32 numCameras = (UINT32)cameras.size(); for (UINT32 i = 0; i < numCameras; i++) render(renderTargetData, i); RenderAPICore::instance().endFrame(); RenderAPICore::instance().swapBuffers(target); } gProfilerCPU().endSample("renderAllCore"); } void RenderBeast::render(RenderTargetData& rtData, UINT32 camIdx) { gProfilerCPU().beginSample("Render"); const CameraCore* camera = rtData.cameras[camIdx]; CameraData& camData = mCameraData[camera]; SPtr viewport = camera->getViewport(); CameraShaderData cameraShaderData = getCameraShaderData(*camera); mStaticHandler->updatePerCameraBuffers(cameraShaderData); // Render scene objects to g-buffer bool hasGBuffer = ((UINT32)camera->getFlags() & (UINT32)CameraFlags::Overlay) == 0; if (hasGBuffer) { bool createGBuffer = camData.target == nullptr || camData.target->getHDR() != mCoreOptions->hdr || camData.target->getNumSamples() != mCoreOptions->msaa; if (createGBuffer) camData.target = RenderTargets::create(viewport, mCoreOptions->hdr, mCoreOptions->msaa); camData.target->allocate(); camData.target->bindGBuffer(); } else camData.target = nullptr; // Trigger pre-scene callbacks auto iterCameraCallbacks = mRenderCallbacks.find(camera); if (iterCameraCallbacks != mRenderCallbacks.end()) { for (auto& callbackPair : iterCameraCallbacks->second) { const RenderCallbackData& callbackData = callbackPair.second; if (callbackData.overlay || callbackPair.first >= 0) break; callbackData.callback(); } } if (hasGBuffer) { // Render base pass const Vector& opaqueElements = camData.opaqueQueue->getSortedElements(); for (auto iter = opaqueElements.begin(); iter != opaqueElements.end(); ++iter) { BeastRenderableElement* renderElem = static_cast(iter->renderElem); SPtr material = renderElem->material; UINT32 rendererId = renderElem->renderableId; Matrix4 worldViewProjMatrix = cameraShaderData.viewProj * mRenderableShaderData[rendererId].worldTransform; mStaticHandler->updatePerObjectBuffers(*renderElem, mRenderableShaderData[rendererId], worldViewProjMatrix); mStaticHandler->bindGlobalBuffers(*renderElem); // Note: If I can keep global buffer slot indexes the same between shaders I could only bind these once mStaticHandler->bindPerObjectBuffers(*renderElem); if (iter->applyPass) { SPtr pass = material->getPass(iter->passIdx); setPass(pass); } SPtr passParams = material->getPassParameters(iter->passIdx); if (renderElem->samplerOverrides != nullptr) setPassParams(passParams, &renderElem->samplerOverrides->passes[iter->passIdx]); else setPassParams(passParams, nullptr); gRendererUtility().draw(iter->renderElem->mesh, iter->renderElem->subMesh); } camData.target->bindSceneColor(); // Render light pass SPtr dirMaterial = mDirLightMat->getMaterial(); SPtr dirPass = dirMaterial->getPass(0); setPass(dirPass); mDirLightMat->setGBuffer(camData.target); for (auto& light : mDirectionalLights) { if (!light.internal->getIsActive()) continue; mDirLightMat->setParameters(light.internal); // TODO - Bind parameters to the pipeline manually as I don't need to re-bind gbuffer textures for every light setPassParams(dirMaterial->getPassParameters(0), nullptr); gRendererUtility().drawScreenQuad(*viewport); } SPtr pointMaterial = mPointLightMat->getMaterial(); SPtr pointPass = pointMaterial->getPass(0); setPass(pointPass); mPointLightMat->setGBuffer(camData.target); // TODO - Cull lights based on visibility, right now I just iterate over all of them. for (auto& light : mPointLights) { if (!light.internal->getIsActive()) continue; mPointLightMat->setParameters(light.internal); // TODO - Bind parameters to the pipeline manually as I don't need to re-bind gbuffer textures for every light setPassParams(dirMaterial->getPassParameters(0), nullptr); SPtr mesh = light.internal->getMesh(); gRendererUtility().draw(mesh, mesh->getProperties().getSubMesh(0)); } } // Render transparent objects (TODO - No lighting yet) const Vector& transparentElements = camData.transparentQueue->getSortedElements(); for (auto iter = transparentElements.begin(); iter != transparentElements.end(); ++iter) { BeastRenderableElement* renderElem = static_cast(iter->renderElem); SPtr material = renderElem->material; UINT32 rendererId = renderElem->renderableId; Matrix4 worldViewProjMatrix = cameraShaderData.viewProj * mRenderableShaderData[rendererId].worldTransform; mStaticHandler->updatePerObjectBuffers(*renderElem, mRenderableShaderData[rendererId], worldViewProjMatrix); mStaticHandler->bindGlobalBuffers(*renderElem); // Note: If I can keep global buffer slot indexes the same between shaders I could only bind these once mStaticHandler->bindPerObjectBuffers(*renderElem); if (iter->applyPass) { SPtr pass = material->getPass(iter->passIdx); setPass(pass); } SPtr passParams = material->getPassParameters(iter->passIdx); if (renderElem->samplerOverrides != nullptr) setPassParams(passParams, &renderElem->samplerOverrides->passes[iter->passIdx]); else setPassParams(passParams, nullptr); gRendererUtility().draw(iter->renderElem->mesh, iter->renderElem->subMesh); } camData.opaqueQueue->clear(); camData.transparentQueue->clear(); // Render non-overlay post-scene callbacks if (iterCameraCallbacks != mRenderCallbacks.end()) { for (auto& callbackPair : iterCameraCallbacks->second) { const RenderCallbackData& callbackData = callbackPair.second; if (callbackData.overlay || callbackPair.first < 0) break; callbackData.callback(); } } if (hasGBuffer) { // TODO - Instead of doing a separate resolve here I could potentially perform a resolve directly in the // light pass. camData.target->resolve(); } else { // Prepare final render target SPtr target = rtData.target; RenderAPICore::instance().setRenderTarget(target); RenderAPICore::instance().setViewport(viewport->getNormArea()); // If first camera in render target, prepare the render target if (camIdx == 0) { UINT32 clearBuffers = 0; if (viewport->getRequiresColorClear()) clearBuffers |= FBT_COLOR; if (viewport->getRequiresDepthClear()) clearBuffers |= FBT_DEPTH; if (viewport->getRequiresStencilClear()) clearBuffers |= FBT_STENCIL; if (clearBuffers != 0) { RenderAPICore::instance().clearViewport(clearBuffers, viewport->getClearColor(), viewport->getClearDepthValue(), viewport->getClearStencilValue()); } } } // Render overlay post-scene callbacks if (iterCameraCallbacks != mRenderCallbacks.end()) { for (auto& callbackPair : iterCameraCallbacks->second) { const RenderCallbackData& callbackData = callbackPair.second; if (!callbackData.overlay) break; callbackData.callback(); } } if (hasGBuffer) camData.target->release(); gProfilerCPU().endSample("Render"); } void RenderBeast::determineVisible(const CameraCore& camera) { CameraData& cameraData = mCameraData[&camera]; UINT64 cameraLayers = camera.getLayers(); ConvexVolume worldFrustum = camera.getWorldFrustum(); // Update per-object param buffers and queue render elements for (auto& renderableData : mRenderables) { RenderableCore* renderable = renderableData.renderable; RenderableHandler* controller = renderableData.controller; UINT32 renderableType = renderable->getRenderableType(); UINT32 rendererId = renderable->getRendererId(); if ((renderable->getLayer() & cameraLayers) == 0) continue; // Do frustum culling // TODO - This is bound to be a bottleneck at some point. When it is ensure that intersect // methods use vector operations, as it is trivial to update them. const Sphere& boundingSphere = mWorldBounds[rendererId].getSphere(); if (worldFrustum.intersects(boundingSphere)) { // More precise with the box const AABox& boundingBox = mWorldBounds[rendererId].getBox(); if (worldFrustum.intersects(boundingBox)) { float distanceToCamera = (camera.getPosition() - boundingBox.getCenter()).length(); for (auto& renderElem : renderableData.elements) { bool isTransparent = (renderElem.material->getShader()->getFlags() & (UINT32)ShaderFlags::Transparent) != 0; if (isTransparent) cameraData.transparentQueue->add(&renderElem, distanceToCamera); else cameraData.opaqueQueue->add(&renderElem, distanceToCamera); } } } } cameraData.opaqueQueue->sort(); cameraData.transparentQueue->sort(); } Vector2 RenderBeast::getDeviceZTransform(const Matrix4& projMatrix) { Vector2 output; output.x = 1.0f / projMatrix[2][2]; output.y = projMatrix[2][3] / projMatrix[2][2]; return output; } CameraShaderData RenderBeast::getCameraShaderData(const CameraCore& camera) { CameraShaderData data; data.proj = camera.getProjectionMatrixRS(); data.view = camera.getViewMatrix(); data.viewProj = data.proj * data.view; data.invProj = data.proj.inverse(); data.viewDir = camera.getForward(); data.viewOrigin = camera.getPosition(); data.deviceZToWorldZ = getDeviceZTransform(data.proj); SPtr viewport = camera.getViewport(); SPtr rt = viewport->getTarget(); float halfWidth = viewport->getWidth() / 2.0f; float halfHeight = viewport->getHeight() / 2.0f; float rtWidth = (float)rt->getProperties().getWidth(); float rtHeight = (float)rt->getProperties().getHeight(); RenderAPICore& rapi = RenderAPICore::instance(); data.clipToUVScaleOffset.x = (halfWidth / 2.0f) / rtWidth; data.clipToUVScaleOffset.y = (halfHeight / 2.0f) / rtHeight; data.clipToUVScaleOffset.z = (viewport->getX() + halfWidth + rapi.getHorizontalTexelOffset()) / rtWidth; data.clipToUVScaleOffset.w = (viewport->getY() + halfHeight + rapi.getHorizontalTexelOffset()) / rtHeight; return data; } void RenderBeast::refreshSamplerOverrides(bool force) { for (auto& entry : mSamplerOverrides) { SPtr material = entry.first; if (force) { SamplerOverrideUtility::destroySamplerOverrides(entry.second); entry.second = SamplerOverrideUtility::generateSamplerOverrides(material, mCoreOptions); } else { MaterialSamplerOverrides* materialOverrides = entry.second; UINT32 numPasses = material->getNumPasses(); assert(numPasses == materialOverrides->numPasses); for (UINT32 i = 0; i < numPasses; i++) { SPtr passParams = material->getPassParameters(i); PassSamplerOverrides& passOverrides = materialOverrides->passes[i]; for (UINT32 j = 0; j < PassParametersCore::NUM_PARAMS; j++) { StageSamplerOverrides& stageOverrides = passOverrides.stages[j]; SPtr params = passParams->getParamByIdx(j); if (params == nullptr) continue; const GpuParamDesc& paramDesc = params->getParamDesc(); for (auto iter = paramDesc.samplers.begin(); iter != paramDesc.samplers.end(); ++iter) { UINT32 slot = iter->second.slot; SPtr samplerState = params->getSamplerState(slot); assert(stageOverrides.numStates > slot); if (samplerState != stageOverrides.stateOverrides[slot]) { if (samplerState != nullptr) stageOverrides.stateOverrides[slot] = SamplerOverrideUtility::generateSamplerOverride(samplerState, mCoreOptions); else stageOverrides.stateOverrides[slot] = SamplerOverrideUtility::generateSamplerOverride(SamplerStateCore::getDefault(), mCoreOptions);; } } } } } } } void RenderBeast::setPass(const SPtr& pass) { THROW_IF_NOT_CORE_THREAD; RenderAPICore& rs = RenderAPICore::instance(); struct StageData { GpuProgramType type; bool enable; SPtr program; }; const UINT32 numStages = 6; StageData stages[numStages] = { { GPT_VERTEX_PROGRAM, pass->hasVertexProgram(), pass->getVertexProgram() }, { GPT_FRAGMENT_PROGRAM, pass->hasFragmentProgram(), pass->getFragmentProgram() }, { GPT_GEOMETRY_PROGRAM, pass->hasGeometryProgram(), pass->getGeometryProgram() }, { GPT_HULL_PROGRAM, pass->hasHullProgram(), pass->getHullProgram() }, { GPT_DOMAIN_PROGRAM, pass->hasDomainProgram(), pass->getDomainProgram() }, { GPT_COMPUTE_PROGRAM, pass->hasComputeProgram(), pass->getComputeProgram() } }; for (UINT32 i = 0; i < numStages; i++) { const StageData& stage = stages[i]; if (stage.enable) rs.bindGpuProgram(stage.program); else rs.unbindGpuProgram(stage.type); } // Set up non-texture related pass settings if (pass->getBlendState() != nullptr) rs.setBlendState(pass->getBlendState()); else rs.setBlendState(BlendStateCore::getDefault()); if (pass->getDepthStencilState() != nullptr) rs.setDepthStencilState(pass->getDepthStencilState(), pass->getStencilRefValue()); else rs.setDepthStencilState(DepthStencilStateCore::getDefault(), pass->getStencilRefValue()); if (pass->getRasterizerState() != nullptr) rs.setRasterizerState(pass->getRasterizerState()); else rs.setRasterizerState(RasterizerStateCore::getDefault()); } void RenderBeast::setPassParams(const SPtr& passParams, const PassSamplerOverrides* samplerOverrides) { THROW_IF_NOT_CORE_THREAD; RenderAPICore& rs = RenderAPICore::instance(); struct StageData { GpuProgramType type; SPtr params; }; const UINT32 numStages = 6; StageData stages[numStages] = { { GPT_VERTEX_PROGRAM, passParams->mVertParams }, { GPT_FRAGMENT_PROGRAM, passParams->mFragParams }, { GPT_GEOMETRY_PROGRAM, passParams->mGeomParams }, { GPT_HULL_PROGRAM, passParams->mHullParams }, { GPT_DOMAIN_PROGRAM, passParams->mDomainParams }, { GPT_COMPUTE_PROGRAM, passParams->mComputeParams } }; for (UINT32 i = 0; i < numStages; i++) { const StageData& stage = stages[i]; SPtr params = stage.params; if (params == nullptr) continue; const GpuParamDesc& paramDesc = params->getParamDesc(); for (auto iter = paramDesc.samplers.begin(); iter != paramDesc.samplers.end(); ++iter) { SPtr samplerState; if (samplerOverrides != nullptr) samplerState = samplerOverrides->stages[i].stateOverrides[iter->second.slot]; else samplerState = params->getSamplerState(iter->second.slot); if (samplerState == nullptr) rs.setSamplerState(stage.type, iter->second.slot, SamplerStateCore::getDefault()); else rs.setSamplerState(stage.type, iter->second.slot, samplerState); } for (auto iter = paramDesc.textures.begin(); iter != paramDesc.textures.end(); ++iter) { SPtr texture = params->getTexture(iter->second.slot); if (!params->isLoadStoreTexture(iter->second.slot)) { if (texture == nullptr) rs.setTexture(stage.type, iter->second.slot, false, nullptr); else rs.setTexture(stage.type, iter->second.slot, true, texture); } else { const TextureSurface& surface = params->getLoadStoreSurface(iter->second.slot); if (texture == nullptr) rs.setLoadStoreTexture(stage.type, iter->second.slot, false, nullptr, surface); else rs.setLoadStoreTexture(stage.type, iter->second.slot, true, texture, surface); } } rs.setConstantBuffers(stage.type, params); } } }