#pragma once #include "BsPrerequisitesUtil.h" #include "BsDegree.h" #include "BsRadian.h" namespace BansheeEngine { /** * @brief Utility class providing common scalar math operations. */ class BS_UTILITY_EXPORT Math { public: static Radian acos(float val); static Radian asin(float val); static Radian atan(float val) { return Radian(std::atan(val)); } static Radian atan2(float y, float x) { return Radian(std::atan2(y,x)); } static float cos(const Radian& val) { return (float)std::cos(val.valueRadians()); } static float cos(float val) { return (float)std::cos(val); } static float sin(const Radian& val) { return (float)std::sin(val.valueRadians()); } static float sin(float val) { return (float)std::sin(val); } static float tan(const Radian& val) { return (float)std::tan(val.valueRadians()); } static float tan(float val) { return (float)std::tan(val); } static float sqrt(float val) { return (float)std::sqrt(val); } static Radian sqrt(const Radian& val) { return Radian(std::sqrt(val.valueRadians())); } static Degree sqrt(const Degree& val) { return Degree(std::sqrt(val.valueDegrees())); } static float invSqrt(float val); static float sqr(float val) { return val*val; } static float pow(float base, float exponent) { return (float)std::pow(base, exponent); } static float exp(float val) { return (float)std::exp(val); } static float log(float val) { return (float)std::log(val); } static float log2(float val) { return (float)(std::log(val)/LOG2); } static float logN(float base, float val) { return (float)(std::log(val)/std::log(base)); } static float sign(float val); static Radian sign(const Radian& val) { return Radian(sign(val.valueRadians())); } static Degree sign(const Degree& val) { return Degree(sign(val.valueDegrees())); } static float abs(float val) { return float(std::fabs(val)); } static Degree abs(const Degree& val) { return Degree(std::fabs(val.valueDegrees())); } static Radian abs(const Radian& val) { return Radian(std::fabs(val.valueRadians())); } static float ceil(float val) { return (float)std::ceil(val); } static int ceilToInt(float val) { return (int)std::ceil(val); } static float round(float val) { return (float)std::floor(val + 0.5f); } static int roundToInt(float val) { return (int)std::floor(val + 0.5f); } static float floor(float val) { return (float)std::floor(val); } static int floorToInt(float val) { return (int)std::floor(val); } /** * @brief Clamp a value within an inclusive range. */ template static T clamp(T val, T minval, T maxval) { assert (minval <= maxval && "Invalid clamp range"); return std::max(std::min(val, maxval), minval); } /** * @brief Clamp a value within an inclusive range [0..1]. */ template static T clamp01(T val) { return std::max(std::min(val, (T)1), (T)0); } /** * @brief Checks is the specified value a power of two. Only works on integer values. */ template static bool isPow2(T val) { return (val & (val - 1)) == 0; } static bool isNaN(float f) { return f != f; } /** * @brief Compare 2 floats, using tolerance for inaccuracies. */ static bool approxEquals(float a, float b, float tolerance = std::numeric_limits::epsilon()); /** * @brief Compare 2 doubles, using tolerance for inaccuracies. */ static bool approxEquals(double a, double b, double tolerance = std::numeric_limits::epsilon()); /** * @brief Calculates the tangent space vector for a given set of positions / texture coords. */ static Vector3 calculateTriTangent(const Vector3& position1, const Vector3& position2, const Vector3& position3, float u1, float v1, float u2, float v2, float u3, float v3); /************************************************************************/ /* TRIG APPROXIMATIONS */ /************************************************************************/ /** * @brief Sine function approximation. * * @param val Angle in range [0, pi/2]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastSin0(const Radian& val) { return (float)fastASin0(val.valueRadians()); } /** * @brief Sine function approximation. * * @param val Angle in range [0, pi/2]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastSin0(float val); /** * @brief Sine function approximation. * * @param val Angle in range [0, pi/2]. * * @note Evaluates trigonometric functions using polynomial approximations. * Slightly better (and slower) than "fastSin0". */ static float fastSin1(const Radian& val) { return (float)fastASin1(val.valueRadians()); } /** * @brief Sine function approximation. * * @param val Angle in range [0, pi/2]. * * @note Evaluates trigonometric functions using polynomial approximations. * Slightly better (and slower) than "fastSin0". */ static float fastSin1(float val); /** * @brief Cosine function approximation. * * @param val Angle in range [0, pi/2]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastCos0(const Radian& val) { return (float)fastACos0(val.valueRadians()); } /** * @brief Cosine function approximation. * * @param val Angle in range [0, pi/2]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastCos0(float val); /** * @brief Cosine function approximation. * * @param val Angle in range [0, pi/2]. * * @note Evaluates trigonometric functions using polynomial approximations. * Slightly better (and slower) than "fastCos0". */ static float fastCos1(const Radian& val) { return (float)fastACos1(val.valueRadians()); } /** * @brief Cosine function approximation. * * @param val Angle in range [0, pi/2]. * * @note Evaluates trigonometric functions using polynomial approximations. * Slightly better (and slower) than "fastCos0". */ static float fastCos1(float val); /** * @brief Tangent function approximation. * * @param val Angle in range [0, pi/4]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastTan0(const Radian& val) { return (float)fastATan0(val.valueRadians()); } /** * @brief Tangent function approximation. * * @param val Angle in range [0, pi/4]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastTan0(float val); /** * @brief Tangent function approximation. * * @param val Angle in range [0, pi/4]. * * @note Evaluates trigonometric functions using polynomial approximations. * Slightly better (and slower) than "fastTan0". */ static float fastTan1(const Radian& val) { return (float)fastATan1(val.valueRadians()); } /** * @brief Tangent function approximation. * * @param val Angle in range [0, pi/4]. * * @note Evaluates trigonometric functions using polynomial approximations. * Slightly better (and slower) than "fastTan0". */ static float fastTan1(float val); /** * @brief Inverse sine function approximation. * * @param val Angle in range [0, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastASin0(const Radian& val) { return (float)fastASin0(val.valueRadians()); } /** * @brief Inverse sine function approximation. * * @param val Angle in range [0, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastASin0(float val); /** * @brief Inverse sine function approximation. * * @param val Angle in range [0, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. * Slightly better (and slower) than "fastASin0". */ static float fastASin1(const Radian& val) { return (float)fastASin1(val.valueRadians()); } /** * @brief Inverse sine function approximation. * * @param val Angle in range [0, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. * Slightly better (and slower) than "fastASin0". */ static float fastASin1(float val); /** * @brief Inverse cosine function approximation. * * @param val Angle in range [0, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastACos0(const Radian& val) { return (float)fastACos0(val.valueRadians()); } /** * @brief Inverse cosine function approximation. * * @param val Angle in range [0, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastACos0(float val); /** * @brief Inverse cosine function approximation. * * @param val Angle in range [0, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. * Slightly better (and slower) than "fastACos0". */ static float fastACos1(const Radian& val) { return (float)fastACos1(val.valueRadians()); } /** * @brief Inverse cosine function approximation. * * @param val Angle in range [0, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. * Slightly better (and slower) than "fastACos0". */ static float fastACos1(float val); /** * @brief Inverse tangent function approximation. * * @param val Angle in range [-1, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastATan0(const Radian& val) { return (float)fastATan0(val.valueRadians()); } /** * @brief Inverse tangent function approximation. * * @param val Angle in range [-1, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastATan0(float val); /** * @brief Inverse tangent function approximation. * * @param val Angle in range [-1, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. * Slightly better (and slower) than "fastATan0". */ static float fastATan1(const Radian& val) { return (float)fastATan1(val.valueRadians()); } /** * @brief Inverse tangent function approximation. * * @param val Angle in range [-1, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. * Slightly better (and slower) than "fastATan0". */ static float fastATan1(float val); /** * @brief Interpolates between min and max. Returned value is in * [0, 1] range where min = 0, max = 1 and 0.5 is the average * of min and max. */ template static float lerp01(T val, T min, T max) { return clamp01((val - min) / std::max(max - min, 0.0001F)); } /** * @brief Solves the linear equation with the parameters A, B. * Returns number of roots found and the roots themselves will * be output in the "roots" array. * * @param roots Must be at least size of 1. * * @note Only returns real roots. */ template static UINT32 solveLinear(T A, T B, T* roots) { if (!approxEquals(B, (T)0)) { roots[0] = -A / B; return 1; } else if (approxEquals(A, (T)0)) { roots[0] = 0.0f; return 1; } return 0; } /** * @brief Solves the quadratic equation with the parameters A, B, C. * Returns number of roots found and the roots themselves will * be output in the "roots" array. * * @param roots Must be at least size of 2. * * @note Only returns real roots. */ template static UINT32 solveQuadratic(T A, T B, T C, T* roots) { if (!approxEquals(C, (T)0)) { T discr = B * B - 4 * A * C; if (discr > std::numeric_limits::epsilon()) { float temp = ((T)0.5) / C; discr = std::sqrt(discr); roots[0] = temp * (-B - discr); roots[1] = temp * (-B + discr); return 2; } else if (discr < -std::numeric_limits::epsilon()) { return 0; } else { roots[0] = ((T)-0.5) * (B / C); return 1; } } else { return solveLinear(A, B, roots); } } /** * @brief Solves the cubic equation with the parameters A, B, C, D. * Returns number of roots found and the roots themselves will * be output in the "roots" array. * * @param roots Must be at least size of 3. * * @note Only returns real roots. */ template static UINT32 solveCubic(T A, T B, T C, T D, T* roots) { static const T THIRD = (1 / (T)3); if (!approxEquals(D, (T)0)) { T invD = 1 / D; T k0 = A * invD; T k1 = B * invD; T k2 = C * invD; T offset = THIRD * k2; T a = k1 - k2 * offset; T b = k0 + k2 * (2 * k2 * k2 - 9 * k1) * (1 / (T)27); T halfB = ((T)0.5) * b; T discr = halfB * halfB + a * a * a * (1 / (T)27); if (discr > std::numeric_limits::epsilon()) { discr = std::sqrt(discr); T temp = -halfB + discr; if (temp >= (T)0) roots[0] = pow(temp, THIRD); else roots[0] = -pow(-temp, THIRD); temp = -halfB - discr; if (temp >= 0) roots[0] += pow(temp, THIRD); else roots[0] -= -pow(-temp, THIRD); roots[0] -= offset; return 1; } else if (discr < -std::numeric_limits::epsilon()) { T sqrtThree = std::sqrt((T)3); T dist = sqrt(-THIRD * a); T angle = THIRD * atan2(std::sqrt(-discr), -halfB).valueRadians(); T angleCos = cos(angle); T angleSin = sin(angle); roots[0] = 2 * dist * angleCos - offset; roots[1] = -dist * (angleCos + sqrtThree * angleSin) - offset; roots[2] = -dist * (angleCos - sqrtThree * angleSin) - offset; return 3; } else { T temp; if (halfB >= (T)0) temp = -pow(halfB, THIRD); else temp = pow(-halfB, THIRD); roots[0] = 2 * temp - offset; roots[1] = -temp - offset; roots[2] = roots[1]; return 3; } } else { return solveQuadratic(A, B, C, roots); } } /** * @brief Solves the quartic equation with the parameters A, B, C, D, E. * Returns number of roots found and the roots themselves will * be output in the "roots" array. * * @param roots Must be at least size of 4. * * @note Only returns real roots. */ template static UINT32 solveQuartic(T A, T B, T C, T D, T E, T* roots) { if (!approxEquals(E, (T)0)) { T invE = 1 / E; T k0 = A * invE; T k1 = B * invE; T k2 = C * invE; T k3 = D * invE; T r0 = k0 * (4 * k2 - k3 * k3) - k1 * k1; T r1 = k3 * k1 - 4 * k0; T r2 = -k2; solveCubic(r0, r1, r2, (T)1, roots); T y = roots[0]; UINT32 numRoots = 0; T discr = ((T)0.25) * k3 * k3 - k2 + y; if (discr > std::numeric_limits::epsilon()) { T r = sqrt(discr); T t1 = ((T)0.75) * k3 * k3 - r * r - 2*k2; T t2 = (k3 * k2 - 2 * k1 - ((T)0.25) * k3 * k3 * k3) / r; T tPlus = t1 + t2; if (tPlus >= ((T)0)) { T d = std::sqrt(tPlus); roots[0] = ((T)-0.25) * k3 + ((T)0.5) * (r + d); roots[1] = ((T)-0.25) * k3 + ((T)0.5) * (r - d); numRoots += 2; } T tMinus = t1 - t2; if (tMinus >= ((T)0)) { T e = std::sqrt(tMinus); roots[numRoots++] = ((T)-0.25) * k3 + ((T)0.5) * (e - r); roots[numRoots++] = ((T)-0.25) * k3 - ((T)0.5) * (e + r); } } else if (discr < -std::numeric_limits::epsilon()) { numRoots = 0; } else { T t2 = y * y - 4 * k0; if (t2 >= ((T)0)) { t2 = 2 * std::sqrt(t2); T t1 = ((T)0.75) * k3 * k3 - 2 * k2; T tPlus = t1 + t2; if (tPlus >= ((T)0)) { T d = std::sqrt(tPlus); roots[0] = ((T)-0.25) * k3 + ((T)0.5) * d; roots[1] = ((T)-0.25) * k3 + ((T)0.5) * d; numRoots += 2; } T tMinus = t1 - t2; if (tMinus >= ((T)0)) { T e = std::sqrt(tMinus); roots[numRoots++] = ((T)-0.25) * k3 + ((T)0.5) * e; roots[numRoots++] = ((T)-0.25) * k3 - ((T)0.5) * e; } } } return numRoots; } else { return solveCubic(A, B, C, D, roots); } } static const float POS_INFINITY; static const float NEG_INFINITY; static const float PI; static const float TWO_PI; static const float HALF_PI; static const float DEG2RAD; static const float RAD2DEG; static const float LOG2; }; }