//********************************** Banshee Engine (www.banshee3d.com) **************************************************// //**************** Copyright (c) 2016 Marko Pintera (marko.pintera@gmail.com). All rights reserved. **********************// #include "BsPostProcessing.h" #include "RenderAPI/BsRenderTexture.h" #include "BsGpuResourcePool.h" #include "Renderer/BsRendererUtility.h" #include "Renderer/BsCamera.h" #include "Material/BsGpuParamsSet.h" #include "BsRendererView.h" #include "Image/BsPixelUtil.h" #include "Utility/BsBitwise.h" #include "BsRenderBeast.h" namespace bs { namespace ct { void setSamplerState(const SPtr& params, GpuProgramType gpType, const String& name, const String& secondaryName, const SPtr& samplerState, bool optional = false) { if (params->hasSamplerState(gpType, name)) params->setSamplerState(gpType, name, samplerState); else { if(optional) { if (params->hasSamplerState(gpType, secondaryName)) params->setSamplerState(gpType, secondaryName, samplerState); } else params->setSamplerState(gpType, secondaryName, samplerState); } } DownsampleParamDef gDownsampleParamDef; DownsampleMat::DownsampleMat() { mParamBuffer = gDownsampleParamDef.createBuffer(); if(mParams->hasParamBlock(GPT_FRAGMENT_PROGRAM, "Input")) mParams->setParamBlockBuffer("Input", mParamBuffer); mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gInputTex", mInputTexture); } void DownsampleMat::execute(const SPtr& input, const SPtr& output) { // Set parameters mInputTexture.set(input); const TextureProperties& rtProps = input->getProperties(); bool MSAA = mVariation.getInt("MSAA") > 0; if(MSAA) { gDownsampleParamDef.gOffsets.set(mParamBuffer, Vector2(-1.0f, -1.0f)); gDownsampleParamDef.gOffsets.set(mParamBuffer, Vector2(1.0f, -1.0f)); gDownsampleParamDef.gOffsets.set(mParamBuffer, Vector2(-1.0f, 1.0f)); gDownsampleParamDef.gOffsets.set(mParamBuffer, Vector2(1.0f, 1.0f)); } else { Vector2 invTextureSize(1.0f / rtProps.getWidth(), 1.0f / rtProps.getHeight()); gDownsampleParamDef.gOffsets.set(mParamBuffer, invTextureSize * Vector2(-1.0f, -1.0f)); gDownsampleParamDef.gOffsets.set(mParamBuffer, invTextureSize * Vector2(1.0f, -1.0f)); gDownsampleParamDef.gOffsets.set(mParamBuffer, invTextureSize * Vector2(-1.0f, 1.0f)); gDownsampleParamDef.gOffsets.set(mParamBuffer, invTextureSize * Vector2(1.0f, 1.0f)); } RenderAPI& rapi = RenderAPI::instance(); rapi.setRenderTarget(output, FBT_DEPTH | FBT_STENCIL); bind(); if (MSAA) gRendererUtility().drawScreenQuad(Rect2(0.0f, 0.0f, (float)rtProps.getWidth(), (float)rtProps.getHeight())); else gRendererUtility().drawScreenQuad(); rapi.setRenderTarget(nullptr); } POOLED_RENDER_TEXTURE_DESC DownsampleMat::getOutputDesc(const SPtr& target) { const TextureProperties& rtProps = target->getProperties(); UINT32 width = std::max(1, Math::ceilToInt(rtProps.getWidth() * 0.5f)); UINT32 height = std::max(1, Math::ceilToInt(rtProps.getHeight() * 0.5f)); return POOLED_RENDER_TEXTURE_DESC::create2D(rtProps.getFormat(), width, height, TU_RENDERTARGET); } DownsampleMat* DownsampleMat::getVariation(UINT32 quality, bool msaa) { if(quality == 0) { if (msaa) return get(getVariation<0, true>()); else return get(getVariation<0, false>()); } else { if (msaa) return get(getVariation<1, true>()); else return get(getVariation<1, false>()); } } EyeAdaptHistogramParamDef gEyeAdaptHistogramParamDef; EyeAdaptHistogramMat::EyeAdaptHistogramMat() { mParamBuffer = gEyeAdaptHistogramParamDef.createBuffer(); mParams->setParamBlockBuffer("Input", mParamBuffer); mParams->getTextureParam(GPT_COMPUTE_PROGRAM, "gSceneColorTex", mSceneColor); mParams->getLoadStoreTextureParam(GPT_COMPUTE_PROGRAM, "gOutputTex", mOutputTex); } void EyeAdaptHistogramMat::_initDefines(ShaderDefines& defines) { defines.set("THREADGROUP_SIZE_X", THREAD_GROUP_SIZE_X); defines.set("THREADGROUP_SIZE_Y", THREAD_GROUP_SIZE_Y); defines.set("LOOP_COUNT_X", LOOP_COUNT_X); defines.set("LOOP_COUNT_Y", LOOP_COUNT_Y); } void EyeAdaptHistogramMat::execute(const SPtr& input, const SPtr& output, const AutoExposureSettings& settings) { // Set parameters mSceneColor.set(input); const TextureProperties& props = input->getProperties(); Vector4I offsetAndSize(0, 0, (INT32)props.getWidth(), (INT32)props.getHeight()); gEyeAdaptHistogramParamDef.gHistogramParams.set(mParamBuffer, getHistogramScaleOffset(settings)); gEyeAdaptHistogramParamDef.gPixelOffsetAndSize.set(mParamBuffer, offsetAndSize); Vector2I threadGroupCount = getThreadGroupCount(input); gEyeAdaptHistogramParamDef.gThreadGroupCount.set(mParamBuffer, threadGroupCount); // Dispatch mOutputTex.set(output); bind(); RenderAPI& rapi = RenderAPI::instance(); rapi.dispatchCompute(threadGroupCount.x, threadGroupCount.y); } POOLED_RENDER_TEXTURE_DESC EyeAdaptHistogramMat::getOutputDesc(const SPtr& target) { Vector2I threadGroupCount = getThreadGroupCount(target); UINT32 numHistograms = threadGroupCount.x * threadGroupCount.y; return POOLED_RENDER_TEXTURE_DESC::create2D(PF_RGBA16F, HISTOGRAM_NUM_TEXELS, numHistograms, TU_LOADSTORE); } Vector2I EyeAdaptHistogramMat::getThreadGroupCount(const SPtr& target) { const UINT32 texelsPerThreadGroupX = THREAD_GROUP_SIZE_X * LOOP_COUNT_X; const UINT32 texelsPerThreadGroupY = THREAD_GROUP_SIZE_Y * LOOP_COUNT_Y; const TextureProperties& props = target->getProperties(); Vector2I threadGroupCount; threadGroupCount.x = ((INT32)props.getWidth() + texelsPerThreadGroupX - 1) / texelsPerThreadGroupX; threadGroupCount.y = ((INT32)props.getHeight() + texelsPerThreadGroupY - 1) / texelsPerThreadGroupY; return threadGroupCount; } Vector2 EyeAdaptHistogramMat::getHistogramScaleOffset(const AutoExposureSettings& settings) { float diff = settings.histogramLog2Max - settings.histogramLog2Min; float scale = 1.0f / diff; float offset = -settings.histogramLog2Min * scale; return Vector2(scale, offset); } EyeAdaptHistogramReduceParamDef gEyeAdaptHistogramReduceParamDef; EyeAdaptHistogramReduceMat::EyeAdaptHistogramReduceMat() { mParamBuffer = gEyeAdaptHistogramReduceParamDef.createBuffer(); mParams->setParamBlockBuffer("Input", mParamBuffer); mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gHistogramTex", mHistogramTex); mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gEyeAdaptationTex", mEyeAdaptationTex); } void EyeAdaptHistogramReduceMat::execute(const SPtr& sceneColor, const SPtr& histogram, const SPtr& prevFrame, const SPtr& output) { // Set parameters mHistogramTex.set(histogram); SPtr eyeAdaptationTex; if (prevFrame == nullptr) // Could be that this is the first run eyeAdaptationTex = Texture::WHITE; else eyeAdaptationTex = prevFrame; mEyeAdaptationTex.set(eyeAdaptationTex); Vector2I threadGroupCount = EyeAdaptHistogramMat::getThreadGroupCount(sceneColor); UINT32 numHistograms = threadGroupCount.x * threadGroupCount.y; gEyeAdaptHistogramReduceParamDef.gThreadGroupCount.set(mParamBuffer, numHistograms); RenderAPI& rapi = RenderAPI::instance(); rapi.setRenderTarget(output, FBT_DEPTH | FBT_STENCIL); bind(); Rect2 drawUV(0.0f, 0.0f, (float)EyeAdaptHistogramMat::HISTOGRAM_NUM_TEXELS, 2.0f); gRendererUtility().drawScreenQuad(drawUV); rapi.setRenderTarget(nullptr); } POOLED_RENDER_TEXTURE_DESC EyeAdaptHistogramReduceMat::getOutputDesc() { return POOLED_RENDER_TEXTURE_DESC::create2D(PF_RGBA16F, EyeAdaptHistogramMat::HISTOGRAM_NUM_TEXELS, 2, TU_RENDERTARGET); } EyeAdaptationParamDef gEyeAdaptationParamDef; EyeAdaptationMat::EyeAdaptationMat() { mParamBuffer = gEyeAdaptationParamDef.createBuffer(); mParams->setParamBlockBuffer("EyeAdaptationParams", mParamBuffer); mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gHistogramTex", mReducedHistogramTex); } void EyeAdaptationMat::_initDefines(ShaderDefines& defines) { defines.set("THREADGROUP_SIZE_X", EyeAdaptHistogramMat::THREAD_GROUP_SIZE_X); defines.set("THREADGROUP_SIZE_Y", EyeAdaptHistogramMat::THREAD_GROUP_SIZE_Y); } void EyeAdaptationMat::execute(const SPtr& reducedHistogram, const SPtr& output, float frameDelta, const AutoExposureSettings& settings, float exposureScale) { // Set parameters mReducedHistogramTex.set(reducedHistogram); populateParams(mParamBuffer, frameDelta, settings, exposureScale); // Render RenderAPI& rapi = RenderAPI::instance(); rapi.setRenderTarget(output, FBT_DEPTH | FBT_STENCIL); bind(); gRendererUtility().drawScreenQuad(); rapi.setRenderTarget(nullptr); } POOLED_RENDER_TEXTURE_DESC EyeAdaptationMat::getOutputDesc() { return POOLED_RENDER_TEXTURE_DESC::create2D(PF_R32F, 1, 1, TU_RENDERTARGET); } void EyeAdaptationMat::populateParams(const SPtr& paramBuffer, float frameDelta, const AutoExposureSettings& settings, float exposureScale) { Vector2 histogramScaleAndOffset = EyeAdaptHistogramMat::getHistogramScaleOffset(settings); Vector4 eyeAdaptationParams[3]; eyeAdaptationParams[0].x = histogramScaleAndOffset.x; eyeAdaptationParams[0].y = histogramScaleAndOffset.y; float histogramPctHigh = Math::clamp01(settings.histogramPctHigh); eyeAdaptationParams[0].z = std::min(Math::clamp01(settings.histogramPctLow), histogramPctHigh); eyeAdaptationParams[0].w = histogramPctHigh; eyeAdaptationParams[1].x = std::min(settings.minEyeAdaptation, settings.maxEyeAdaptation); eyeAdaptationParams[1].y = settings.maxEyeAdaptation; eyeAdaptationParams[1].z = settings.eyeAdaptationSpeedUp; eyeAdaptationParams[1].w = settings.eyeAdaptationSpeedDown; eyeAdaptationParams[2].x = Math::pow(2.0f, exposureScale); eyeAdaptationParams[2].y = frameDelta; eyeAdaptationParams[2].z = Math::pow(2.0f, settings.histogramLog2Min); eyeAdaptationParams[2].w = 0.0f; // Unused gEyeAdaptationParamDef.gEyeAdaptationParams.set(paramBuffer, eyeAdaptationParams[0], 0); gEyeAdaptationParamDef.gEyeAdaptationParams.set(paramBuffer, eyeAdaptationParams[1], 1); gEyeAdaptationParamDef.gEyeAdaptationParams.set(paramBuffer, eyeAdaptationParams[2], 2); } EyeAdaptationBasicSetupMat::EyeAdaptationBasicSetupMat() { mParamBuffer = gEyeAdaptationParamDef.createBuffer(); mParams->setParamBlockBuffer("EyeAdaptationParams", mParamBuffer); mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gInputTex", mInputTex); SAMPLER_STATE_DESC desc; desc.minFilter = FO_POINT; desc.magFilter = FO_POINT; desc.mipFilter = FO_POINT; SPtr samplerState = SamplerState::create(desc); setSamplerState(mParams, GPT_FRAGMENT_PROGRAM, "gInputSamp", "gInputTex", samplerState); } void EyeAdaptationBasicSetupMat::execute(const SPtr& input, const SPtr& output, float frameDelta, const AutoExposureSettings& settings, float exposureScale) { // Set parameters mInputTex.set(input); EyeAdaptationMat::populateParams(mParamBuffer, frameDelta, settings, exposureScale); // Render RenderAPI& rapi = RenderAPI::instance(); rapi.setRenderTarget(output); bind(); gRendererUtility().drawScreenQuad(); rapi.setRenderTarget(nullptr); } POOLED_RENDER_TEXTURE_DESC EyeAdaptationBasicSetupMat::getOutputDesc(const SPtr& input) { auto& props = input->getProperties(); return POOLED_RENDER_TEXTURE_DESC::create2D(PF_RGBA16F, props.getWidth(), props.getHeight(), TU_RENDERTARGET); } EyeAdaptationBasicParamsMatDef gEyeAdaptationBasicParamsMatDef; EyeAdaptationBasicMat::EyeAdaptationBasicMat() { mEyeAdaptationParamsBuffer = gEyeAdaptationParamDef.createBuffer(); mParamsBuffer = gEyeAdaptationBasicParamsMatDef.createBuffer(); mParams->setParamBlockBuffer("EyeAdaptationParams", mEyeAdaptationParamsBuffer); mParams->setParamBlockBuffer("Input", mParamsBuffer); mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gCurFrameTex", mCurFrameTexParam); mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gPrevFrameTex", mPrevFrameTexParam); } void EyeAdaptationBasicMat::execute(const SPtr& curFrame, const SPtr& prevFrame, const SPtr& output, float frameDelta, const AutoExposureSettings& settings, float exposureScale) { // Set parameters mCurFrameTexParam.set(curFrame); if (prevFrame == nullptr) // Could be that this is the first run mPrevFrameTexParam.set(Texture::WHITE); else mPrevFrameTexParam.set(prevFrame); EyeAdaptationMat::populateParams(mEyeAdaptationParamsBuffer, frameDelta, settings, exposureScale); auto& texProps = curFrame->getProperties(); Vector2I texSize = { (INT32)texProps.getWidth(), (INT32)texProps.getHeight() }; gEyeAdaptationBasicParamsMatDef.gInputTexSize.set(mParamsBuffer, texSize); // Render RenderAPI& rapi = RenderAPI::instance(); rapi.setRenderTarget(output); bind(); gRendererUtility().drawScreenQuad(); rapi.setRenderTarget(nullptr); } POOLED_RENDER_TEXTURE_DESC EyeAdaptationBasicMat::getOutputDesc() { return POOLED_RENDER_TEXTURE_DESC::create2D(PF_R32F, 1, 1, TU_RENDERTARGET); } CreateTonemapLUTParamDef gCreateTonemapLUTParamDef; WhiteBalanceParamDef gWhiteBalanceParamDef; CreateTonemapLUTMat::CreateTonemapLUTMat() { mIs3D = mVariation.getBool("VOLUME_LUT"); mParamBuffer = gCreateTonemapLUTParamDef.createBuffer(); mWhiteBalanceParamBuffer = gWhiteBalanceParamDef.createBuffer(); mParams->setParamBlockBuffer("Input", mParamBuffer); mParams->setParamBlockBuffer("WhiteBalanceInput", mWhiteBalanceParamBuffer); if(mIs3D) mParams->getLoadStoreTextureParam(GPT_COMPUTE_PROGRAM, "gOutputTex", mOutputTex); } void CreateTonemapLUTMat::_initDefines(ShaderDefines& defines) { defines.set("LUT_SIZE", LUT_SIZE); } void CreateTonemapLUTMat::execute3D(const SPtr& output, const RenderSettings& settings) { assert(mIs3D); populateParamBuffers(settings); // Dispatch mOutputTex.set(output); bind(); RenderAPI& rapi = RenderAPI::instance(); rapi.dispatchCompute(LUT_SIZE / 8, LUT_SIZE / 8, LUT_SIZE); } void CreateTonemapLUTMat::execute2D(const SPtr& output, const RenderSettings& settings) { assert(!mIs3D); populateParamBuffers(settings); // Render RenderAPI& rapi = RenderAPI::instance(); rapi.setRenderTarget(output); bind(); gRendererUtility().drawScreenQuad(); rapi.setRenderTarget(nullptr); } void CreateTonemapLUTMat::populateParamBuffers(const RenderSettings& settings) { // Set parameters gCreateTonemapLUTParamDef.gGammaAdjustment.set(mParamBuffer, 2.2f / settings.gamma); // Note: Assuming sRGB (PC monitor) for now, change to Rec.709 when running on console (value 1), or to raw 2.2 // gamma when running on Mac (value 2) gCreateTonemapLUTParamDef.gGammaCorrectionType.set(mParamBuffer, 0); Vector4 tonemapParams[2]; tonemapParams[0].x = settings.tonemapping.filmicCurveShoulderStrength; tonemapParams[0].y = settings.tonemapping.filmicCurveLinearStrength; tonemapParams[0].z = settings.tonemapping.filmicCurveLinearAngle; tonemapParams[0].w = settings.tonemapping.filmicCurveToeStrength; tonemapParams[1].x = settings.tonemapping.filmicCurveToeNumerator; tonemapParams[1].y = settings.tonemapping.filmicCurveToeDenominator; tonemapParams[1].z = settings.tonemapping.filmicCurveLinearWhitePoint; tonemapParams[1].w = 0.0f; // Unused gCreateTonemapLUTParamDef.gTonemapParams.set(mParamBuffer, tonemapParams[0], 0); gCreateTonemapLUTParamDef.gTonemapParams.set(mParamBuffer, tonemapParams[1], 1); // Set color grading params gCreateTonemapLUTParamDef.gSaturation.set(mParamBuffer, settings.colorGrading.saturation); gCreateTonemapLUTParamDef.gContrast.set(mParamBuffer, settings.colorGrading.contrast); gCreateTonemapLUTParamDef.gGain.set(mParamBuffer, settings.colorGrading.gain); gCreateTonemapLUTParamDef.gOffset.set(mParamBuffer, settings.colorGrading.offset); // Set white balance params gWhiteBalanceParamDef.gWhiteTemp.set(mWhiteBalanceParamBuffer, settings.whiteBalance.temperature); gWhiteBalanceParamDef.gWhiteOffset.set(mWhiteBalanceParamBuffer, settings.whiteBalance.tint); } POOLED_RENDER_TEXTURE_DESC CreateTonemapLUTMat::getOutputDesc() const { if(mIs3D) return POOLED_RENDER_TEXTURE_DESC::create3D(PF_RGBA8, LUT_SIZE, LUT_SIZE, LUT_SIZE, TU_LOADSTORE); return POOLED_RENDER_TEXTURE_DESC::create2D(PF_RGBA8, LUT_SIZE * LUT_SIZE, LUT_SIZE, TU_RENDERTARGET); } CreateTonemapLUTMat* CreateTonemapLUTMat::getVariation(bool is3D) { if(is3D) return get(getVariation()); return get(getVariation()); } TonemappingParamDef gTonemappingParamDef; TonemappingMat::TonemappingMat() { mParamBuffer = gTonemappingParamDef.createBuffer(); mParams->setParamBlockBuffer("Input", mParamBuffer); mParams->getTextureParam(GPT_VERTEX_PROGRAM, "gEyeAdaptationTex", mEyeAdaptationTex); mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gInputTex", mInputTex); if(!mVariation.getBool("GAMMA_ONLY")) mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gColorLUT", mColorLUT); } void TonemappingMat::_initDefines(ShaderDefines& defines) { defines.set("LUT_SIZE", CreateTonemapLUTMat::LUT_SIZE); } void TonemappingMat::execute(const SPtr& sceneColor, const SPtr& eyeAdaptation, const SPtr& colorLUT, const SPtr& output, const RenderSettings& settings) { const TextureProperties& texProps = sceneColor->getProperties(); gTonemappingParamDef.gRawGamma.set(mParamBuffer, 1.0f / settings.gamma); gTonemappingParamDef.gManualExposureScale.set(mParamBuffer, Math::pow(2.0f, settings.exposureScale)); gTonemappingParamDef.gNumSamples.set(mParamBuffer, texProps.getNumSamples()); // Set parameters mInputTex.set(sceneColor); mColorLUT.set(colorLUT); mEyeAdaptationTex.set(eyeAdaptation); // Render RenderAPI& rapi = RenderAPI::instance(); rapi.setRenderTarget(output); bind(); if (mVariation.getBool("MSAA")) gRendererUtility().drawScreenQuad(Rect2(0.0f, 0.0f, (float)texProps.getWidth(), (float)texProps.getHeight())); else gRendererUtility().drawScreenQuad(); } TonemappingMat* TonemappingMat::getVariation(bool volumeLUT, bool gammaOnly, bool autoExposure, bool MSAA) { if(volumeLUT) { if (gammaOnly) { if (autoExposure) { if (MSAA) return get(getVariation()); else return get(getVariation()); } else { if (MSAA) return get(getVariation()); else return get(getVariation()); } } else { if (autoExposure) { if (MSAA) return get(getVariation()); else return get(getVariation()); } else { if (MSAA) return get(getVariation()); else return get(getVariation()); } } } else { if (gammaOnly) { if (autoExposure) { if (MSAA) return get(getVariation()); else return get(getVariation()); } else { if (MSAA) return get(getVariation()); else return get(getVariation()); } } else { if (autoExposure) { if (MSAA) return get(getVariation()); else return get(getVariation()); } else { if (MSAA) return get(getVariation()); else return get(getVariation()); } } } } GaussianBlurParamDef gGaussianBlurParamDef; GaussianBlurMat::GaussianBlurMat() { mParamBuffer = gGaussianBlurParamDef.createBuffer(); mParams->setParamBlockBuffer("Input", mParamBuffer); mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gInputTex", mInputTexture); } void GaussianBlurMat::_initDefines(ShaderDefines& defines) { defines.set("MAX_NUM_SAMPLES", MAX_BLUR_SAMPLES); } void GaussianBlurMat::execute(const SPtr& source, float filterSize, const SPtr& destination) { const TextureProperties& srcProps = source->getProperties(); const RenderTextureProperties& dstProps = destination->getProperties(); Vector2 invTexSize(1.0f / srcProps.getWidth(), 1.0f / srcProps.getHeight()); std::array sampleOffsets; std::array sampleWeights; POOLED_RENDER_TEXTURE_DESC tempTextureDesc = POOLED_RENDER_TEXTURE_DESC::create2D(srcProps.getFormat(), dstProps.width, dstProps.height, TU_RENDERTARGET); SPtr tempTexture = GpuResourcePool::instance().get(tempTextureDesc); auto updateParamBuffer = [&](Direction direction) { float kernelRadius = calcKernelRadius(source, filterSize, direction); UINT32 numSamples = calcStdDistribution(kernelRadius, sampleWeights, sampleOffsets); for(UINT32 i = 0; i < (numSamples + 3) / 4; ++i) { UINT32 remainder = std::min(4U, numSamples - i * 4); Vector4 weights; for (UINT32 j = 0; j < remainder; ++j) weights[j] = sampleWeights[i * 4 + j]; gGaussianBlurParamDef.gSampleWeights.set(mParamBuffer, weights, i); } UINT32 axis0 = direction == DirHorizontal ? 0 : 1; UINT32 axis1 = (axis0 + 1) % 2; for(UINT32 i = 0; i < (numSamples + 1) / 2; ++i) { UINT32 remainder = std::min(2U, numSamples - i * 2); Vector4 offset; offset[axis0] = sampleOffsets[i * 2 + 0] * invTexSize[axis0]; offset[axis1] = 0.0f; if(remainder == 2) { offset[axis0 + 2] = sampleOffsets[i * 2 + 1] * invTexSize[axis0]; offset[axis1 + 2] = 0.0f; } else { offset[axis0 + 2] = 0.0f; offset[axis1 + 2] = 0.0f; } gGaussianBlurParamDef.gSampleOffsets.set(mParamBuffer, offset, i); } gGaussianBlurParamDef.gNumSamples.set(mParamBuffer, numSamples); }; // Horizontal pass { updateParamBuffer(DirHorizontal); mInputTexture.set(source); RenderAPI& rapi = RenderAPI::instance(); rapi.setRenderTarget(tempTexture->renderTexture); bind(); gRendererUtility().drawScreenQuad(); } // Vertical pass { updateParamBuffer(DirVertical); mInputTexture.set(tempTexture->texture); RenderAPI& rapi = RenderAPI::instance(); rapi.setRenderTarget(destination); bind(); gRendererUtility().drawScreenQuad(); } GpuResourcePool::instance().release(tempTexture); } UINT32 GaussianBlurMat::calcStdDistribution(float filterRadius, std::array& weights, std::array& offsets) { filterRadius = Math::clamp(filterRadius, 0.00001f, (float)(MAX_BLUR_SAMPLES - 1)); INT32 intFilterRadius = std::min(Math::ceilToInt(filterRadius), MAX_BLUR_SAMPLES - 1); auto normalDistribution = [](int i, float scale) { float samplePos = fabs((float)i) * scale; return exp(samplePos * samplePos); }; // We make use of the hardware linear filtering, and therefore only generate half the number of samples. // The weights and the sampling location needs to be adjusted in order to get the same results as if we // perform two samples separately: // // Original formula is: t1*w1 + t2*w2 // With hardware filtering it's: (t1 + (t2 - t1) * o) * w3 // Or expanded: t1*w3 - t1*o*w3 + t2*o*w3 = t1 * (w3 - o*w3) + t2 * (o*w3) // // These two need to equal, which means this follows: // w1 = w3 - o*w3 // w2 = o*w3 // // From the second equation get the offset o: // o = w2/w3 // // From the first equation and o, get w3: // w1 = w3 - w2 // w3 = w1 + w2 float scale = 1.0f / filterRadius; UINT32 numSamples = 0; float totalWeight = 0.0f; for(int i = -intFilterRadius; i < intFilterRadius; i += 2) { float w1 = normalDistribution(i, scale); float w2 = normalDistribution(i + 1, scale); float w3 = w1 + w2; float o = w2/w3; // Relative to first sample weights[numSamples] = w3; offsets[numSamples] = o; numSamples++; totalWeight += w3; } // Special case for last weight, as it doesn't have a matching pair float w = normalDistribution(intFilterRadius, scale); weights[numSamples] = w; offsets[numSamples] = 0.0f; numSamples++; totalWeight += w; // Normalize weights float invTotalWeight = 1.0f / totalWeight; for(UINT32 i = 0; i < numSamples; i++) weights[i] *= invTotalWeight; return numSamples; } float GaussianBlurMat::calcKernelRadius(const SPtr& source, float scale, Direction filterDir) { scale = Math::clamp01(scale); UINT32 length; if (filterDir == DirHorizontal) length = source->getProperties().getWidth(); else length = source->getProperties().getHeight(); // Divide by two because we need the radius return std::min(length * scale / 2, (float)MAX_BLUR_SAMPLES - 1); } GaussianDOFParamDef gGaussianDOFParamDef; GaussianDOFSeparateMat::GaussianDOFSeparateMat() { mParamBuffer = gGaussianDOFParamDef.createBuffer(); mParams->setParamBlockBuffer("Input", mParamBuffer); mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gColorTex", mColorTexture); mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gDepthTex", mDepthTexture); SAMPLER_STATE_DESC desc; desc.minFilter = FO_POINT; desc.magFilter = FO_POINT; desc.mipFilter = FO_POINT; desc.addressMode.u = TAM_CLAMP; desc.addressMode.v = TAM_CLAMP; desc.addressMode.w = TAM_CLAMP; SPtr samplerState = SamplerState::create(desc); setSamplerState(mParams, GPT_FRAGMENT_PROGRAM, "gColorSamp", "gColorTex", samplerState); } void GaussianDOFSeparateMat::execute(const SPtr& color, const SPtr& depth, const RendererView& view, const DepthOfFieldSettings& settings) { const TextureProperties& srcProps = color->getProperties(); UINT32 outputWidth = std::max(1U, srcProps.getWidth() / 2); UINT32 outputHeight = std::max(1U, srcProps.getHeight() / 2); POOLED_RENDER_TEXTURE_DESC outputTexDesc = POOLED_RENDER_TEXTURE_DESC::create2D(srcProps.getFormat(), outputWidth, outputHeight, TU_RENDERTARGET); mOutput0 = GpuResourcePool::instance().get(outputTexDesc); bool near = mVariation.getBool("NEAR"); bool far = mVariation.getBool("FAR"); SPtr rt; if (near && far) { mOutput1 = GpuResourcePool::instance().get(outputTexDesc); RENDER_TEXTURE_DESC rtDesc; rtDesc.colorSurfaces[0].texture = mOutput0->texture; rtDesc.colorSurfaces[1].texture = mOutput1->texture; rt = RenderTexture::create(rtDesc); } else rt = mOutput0->renderTexture; Vector2 invTexSize(1.0f / srcProps.getWidth(), 1.0f / srcProps.getHeight()); gGaussianDOFParamDef.gHalfPixelOffset.set(mParamBuffer, invTexSize * 0.5f); gGaussianDOFParamDef.gNearBlurPlane.set(mParamBuffer, settings.focalDistance - settings.focalRange * 0.5f); gGaussianDOFParamDef.gFarBlurPlane.set(mParamBuffer, settings.focalDistance + settings.focalRange * 0.5f); gGaussianDOFParamDef.gInvNearBlurRange.set(mParamBuffer, 1.0f / settings.nearTransitionRange); gGaussianDOFParamDef.gInvFarBlurRange.set(mParamBuffer, 1.0f / settings.farTransitionRange); mColorTexture.set(color); mDepthTexture.set(depth); SPtr perView = view.getPerViewBuffer(); mParams->setParamBlockBuffer("PerCamera", perView); RenderAPI& rapi = RenderAPI::instance(); rapi.setRenderTarget(rt); bind(); gRendererUtility().drawScreenQuad(); } SPtr GaussianDOFSeparateMat::getOutput(UINT32 idx) { if (idx == 0) return mOutput0; else if (idx == 1) return mOutput1; return nullptr; } void GaussianDOFSeparateMat::release() { if (mOutput0 != nullptr) GpuResourcePool::instance().release(mOutput0); if (mOutput1 != nullptr) GpuResourcePool::instance().release(mOutput1); } GaussianDOFSeparateMat* GaussianDOFSeparateMat::getVariation(bool near, bool far) { if (near) { if (far) return get(getVariation()); else return get(getVariation()); } else return get(getVariation()); } GaussianDOFCombineMat::GaussianDOFCombineMat() { mParamBuffer = gGaussianDOFParamDef.createBuffer(); mParams->setParamBlockBuffer("Input", mParamBuffer); mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gFocusedTex", mFocusedTexture); mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gDepthTex", mDepthTexture); if(mParams->hasTexture(GPT_FRAGMENT_PROGRAM, "gNearTex")) mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gNearTex", mNearTexture); if(mParams->hasTexture(GPT_FRAGMENT_PROGRAM, "gFarTex")) mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gFarTex", mFarTexture); } void GaussianDOFCombineMat::execute(const SPtr& focused, const SPtr& near, const SPtr& far, const SPtr& depth, const SPtr& output, const RendererView& view, const DepthOfFieldSettings& settings) { const TextureProperties& srcProps = focused->getProperties(); Vector2 invTexSize(1.0f / srcProps.getWidth(), 1.0f / srcProps.getHeight()); gGaussianDOFParamDef.gHalfPixelOffset.set(mParamBuffer, invTexSize * 0.5f); gGaussianDOFParamDef.gNearBlurPlane.set(mParamBuffer, settings.focalDistance - settings.focalRange * 0.5f); gGaussianDOFParamDef.gFarBlurPlane.set(mParamBuffer, settings.focalDistance + settings.focalRange * 0.5f); gGaussianDOFParamDef.gInvNearBlurRange.set(mParamBuffer, 1.0f / settings.nearTransitionRange); gGaussianDOFParamDef.gInvFarBlurRange.set(mParamBuffer, 1.0f / settings.farTransitionRange); mFocusedTexture.set(focused); mNearTexture.set(near); mFarTexture.set(far); mDepthTexture.set(depth); SPtr perView = view.getPerViewBuffer(); mParams->setParamBlockBuffer("PerCamera", perView); RenderAPI& rapi = RenderAPI::instance(); rapi.setRenderTarget(output); bind(); gRendererUtility().drawScreenQuad(); } GaussianDOFCombineMat* GaussianDOFCombineMat::getVariation(bool near, bool far) { if (near) { if (far) return get(getVariation()); else return get(getVariation()); } else return get(getVariation()); } BuildHiZFParamDef gBuildHiZParamDef; BuildHiZMat::BuildHiZMat() { mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gDepthTex", mInputTexture); // If no texture view support, we must manually pick a valid mip level in the shader const RenderAPIInfo& rapiInfo = RenderAPI::instance().getAPIInfo(); if(!rapiInfo.isFlagSet(RenderAPIFeatureFlag::TextureViews)) { mParamBuffer = gBuildHiZParamDef.createBuffer(); SAMPLER_STATE_DESC inputSampDesc; inputSampDesc.minFilter = FO_POINT; inputSampDesc.magFilter = FO_POINT; inputSampDesc.mipFilter = FO_POINT; SPtr inputSampState = SamplerState::create(inputSampDesc); if(mParams->hasSamplerState(GPT_FRAGMENT_PROGRAM, "gDepthSamp")) mParams->setSamplerState(GPT_FRAGMENT_PROGRAM, "gDepthSamp", inputSampState); } } void BuildHiZMat::execute(const SPtr& source, UINT32 srcMip, const Rect2& srcRect, const Rect2& dstRect, const SPtr& output) { RenderAPI& rapi = RenderAPI::instance(); // If no texture view support, we must manually pick a valid mip level in the shader const RenderAPIInfo& rapiInfo = RenderAPI::instance().getAPIInfo(); if(rapiInfo.isFlagSet(RenderAPIFeatureFlag::TextureViews)) mInputTexture.set(source, TextureSurface(srcMip)); else { mInputTexture.set(source); auto& props = source->getProperties(); float pixelWidth = (float)props.getWidth(); float pixelHeight = (float)props.getHeight(); Vector2 halfPixelOffset(0.5f / pixelWidth, 0.5f / pixelHeight); gBuildHiZParamDef.gHalfPixelOffset.set(mParamBuffer, halfPixelOffset); gBuildHiZParamDef.gMipLevel.set(mParamBuffer, srcMip); } rapi.setRenderTarget(output); rapi.setViewport(dstRect); bind(); gRendererUtility().drawScreenQuad(srcRect); rapi.setViewport(Rect2(0, 0, 1, 1)); } FXAAParamDef gFXAAParamDef; FXAAMat::FXAAMat() { mParamBuffer = gFXAAParamDef.createBuffer(); mParams->setParamBlockBuffer("Input", mParamBuffer); mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gInputTex", mInputTexture); } void FXAAMat::execute(const SPtr& source, const SPtr& destination) { const TextureProperties& srcProps = source->getProperties(); Vector2 invTexSize(1.0f / srcProps.getWidth(), 1.0f / srcProps.getHeight()); gFXAAParamDef.gInvTexSize.set(mParamBuffer, invTexSize); mInputTexture.set(source); RenderAPI& rapi = RenderAPI::instance(); rapi.setRenderTarget(destination); bind(); gRendererUtility().drawScreenQuad(); } SSAOParamDef gSSAOParamDef; SSAOMat::SSAOMat() { bool isFinal = mVariation.getBool("FINAL_AO"); bool mixWithUpsampled = mVariation.getBool("MIX_WITH_UPSAMPLED"); mParamBuffer = gSSAOParamDef.createBuffer(); mParams->setParamBlockBuffer("Input", mParamBuffer); if (isFinal) { mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gDepthTex", mDepthTexture); mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gNormalsTex", mNormalsTexture); } if(!isFinal || mixWithUpsampled) mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gSetupAO", mSetupAOTexture); if(mixWithUpsampled) mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gDownsampledAO", mDownsampledAOTexture); mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gRandomTex", mRandomTexture); SAMPLER_STATE_DESC inputSampDesc; inputSampDesc.minFilter = FO_POINT; inputSampDesc.magFilter = FO_POINT; inputSampDesc.mipFilter = FO_POINT; inputSampDesc.addressMode.u = TAM_CLAMP; inputSampDesc.addressMode.v = TAM_CLAMP; inputSampDesc.addressMode.w = TAM_CLAMP; SPtr inputSampState = SamplerState::create(inputSampDesc); if(mParams->hasSamplerState(GPT_FRAGMENT_PROGRAM, "gInputSamp")) mParams->setSamplerState(GPT_FRAGMENT_PROGRAM, "gInputSamp", inputSampState); else { if (isFinal) { mParams->setSamplerState(GPT_FRAGMENT_PROGRAM, "gDepthTex", inputSampState); mParams->setSamplerState(GPT_FRAGMENT_PROGRAM, "gNormalsTex", inputSampState); } if(!isFinal || mixWithUpsampled) mParams->setSamplerState(GPT_FRAGMENT_PROGRAM, "gSetupAO", inputSampState); if(mixWithUpsampled) mParams->setSamplerState(GPT_FRAGMENT_PROGRAM, "gDownsampledAO", inputSampState); } SAMPLER_STATE_DESC randomSampDesc; randomSampDesc.minFilter = FO_POINT; randomSampDesc.magFilter = FO_POINT; randomSampDesc.mipFilter = FO_POINT; randomSampDesc.addressMode.u = TAM_WRAP; randomSampDesc.addressMode.v = TAM_WRAP; randomSampDesc.addressMode.w = TAM_WRAP; SPtr randomSampState = SamplerState::create(randomSampDesc); setSamplerState(mParams, GPT_FRAGMENT_PROGRAM, "gRandomSamp", "gRandomTex", randomSampState); } void SSAOMat::execute(const RendererView& view, const SSAOTextureInputs& textures, const SPtr& destination, const AmbientOcclusionSettings& settings) { // Scale that can be used to adjust how quickly does AO radius increase with downsampled AO. This yields a very // small AO radius at highest level, and very large radius at lowest level static const float DOWNSAMPLE_SCALE = 4.0f; const RendererViewProperties& viewProps = view.getProperties(); const RenderTargetProperties& rtProps = destination->getProperties(); Vector2 tanHalfFOV; tanHalfFOV.x = 1.0f / viewProps.projTransform[0][0]; tanHalfFOV.y = 1.0f / viewProps.projTransform[1][1]; float cotHalfFOV = viewProps.projTransform[0][0]; // Downsampled AO uses a larger AO radius (in higher resolutions this would cause too much cache trashing). This // means if only full res AO is used, then only AO from nearby geometry will be calculated. float viewScale = viewProps.viewRect.width / (float)rtProps.width; // Ramp up the radius exponentially. c^log2(x) function chosen arbitrarily, as it ramps up the radius in a nice way float scale = pow(DOWNSAMPLE_SCALE, Math::log2(viewScale)); // Determine maximum radius scale (division by 4 because we don't downsample more than quarter-size) float maxScale = pow(DOWNSAMPLE_SCALE, Math::log2(4.0f)); // Normalize the scale in [0, 1] range scale /= maxScale; float radius = settings.radius * scale; // Factors used for scaling the AO contribution with range Vector2 fadeMultiplyAdd; fadeMultiplyAdd.x = 1.0f / settings.fadeRange; fadeMultiplyAdd.y = -settings.fadeDistance / settings.fadeRange; gSSAOParamDef.gSampleRadius.set(mParamBuffer, radius); gSSAOParamDef.gCotHalfFOV.set(mParamBuffer, cotHalfFOV); gSSAOParamDef.gTanHalfFOV.set(mParamBuffer, tanHalfFOV); gSSAOParamDef.gWorldSpaceRadiusMask.set(mParamBuffer, 1.0f); gSSAOParamDef.gBias.set(mParamBuffer, (settings.bias * viewScale) / 1000.0f); gSSAOParamDef.gFadeMultiplyAdd.set(mParamBuffer, fadeMultiplyAdd); gSSAOParamDef.gPower.set(mParamBuffer, settings.power); gSSAOParamDef.gIntensity.set(mParamBuffer, settings.intensity); bool upsample = mVariation.getBool("MIX_WITH_UPSAMPLED"); if(upsample) { const TextureProperties& props = textures.aoDownsampled->getProperties(); Vector2 downsampledPixelSize; downsampledPixelSize.x = 1.0f / props.getWidth(); downsampledPixelSize.y = 1.0f / props.getHeight(); gSSAOParamDef.gDownsampledPixelSize.set(mParamBuffer, downsampledPixelSize); } // Generate a scale which we need to use in order to achieve tiling const TextureProperties& rndProps = textures.randomRotations->getProperties(); UINT32 rndWidth = rndProps.getWidth(); UINT32 rndHeight = rndProps.getHeight(); //// Multiple of random texture size, rounded up UINT32 scaleWidth = (rtProps.width + rndWidth - 1) / rndWidth; UINT32 scaleHeight = (rtProps.height + rndHeight - 1) / rndHeight; Vector2 randomTileScale((float)scaleWidth, (float)scaleHeight); gSSAOParamDef.gRandomTileScale.set(mParamBuffer, randomTileScale); mSetupAOTexture.set(textures.aoSetup); bool finalPass = mVariation.getBool("FINAL_AO"); if (finalPass) { mDepthTexture.set(textures.sceneDepth); mNormalsTexture.set(textures.sceneNormals); } if (upsample) mDownsampledAOTexture.set(textures.aoDownsampled); mRandomTexture.set(textures.randomRotations); SPtr perView = view.getPerViewBuffer(); mParams->setParamBlockBuffer("PerCamera", perView); RenderAPI& rapi = RenderAPI::instance(); rapi.setRenderTarget(destination); bind(); gRendererUtility().drawScreenQuad(); } SSAOMat* SSAOMat::getVariation(bool upsample, bool finalPass, int quality) { #define PICK_MATERIAL(QUALITY) \ if(upsample) \ if(finalPass) \ return get(getVariation()); \ else \ return get(getVariation()); \ else \ if(finalPass) \ return get(getVariation()); \ else \ return get(getVariation()); \ switch(quality) { case 0: PICK_MATERIAL(0) case 1: PICK_MATERIAL(1) case 2: PICK_MATERIAL(2) case 3: PICK_MATERIAL(3) default: case 4: PICK_MATERIAL(4) } #undef PICK_MATERIAL } SSAODownsampleParamDef gSSAODownsampleParamDef; SSAODownsampleMat::SSAODownsampleMat() { mParamBuffer = gSSAODownsampleParamDef.createBuffer(); mParams->setParamBlockBuffer("Input", mParamBuffer); mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gDepthTex", mDepthTexture); mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gNormalsTex", mNormalsTexture); SAMPLER_STATE_DESC inputSampDesc; inputSampDesc.minFilter = FO_LINEAR; inputSampDesc.magFilter = FO_LINEAR; inputSampDesc.mipFilter = FO_LINEAR; inputSampDesc.addressMode.u = TAM_CLAMP; inputSampDesc.addressMode.v = TAM_CLAMP; inputSampDesc.addressMode.w = TAM_CLAMP; SPtr inputSampState = SamplerState::create(inputSampDesc); if(mParams->hasSamplerState(GPT_FRAGMENT_PROGRAM, "gInputSamp")) mParams->setSamplerState(GPT_FRAGMENT_PROGRAM, "gInputSamp", inputSampState); else { mParams->setSamplerState(GPT_FRAGMENT_PROGRAM, "gDepthTex", inputSampState); mParams->setSamplerState(GPT_FRAGMENT_PROGRAM, "gNormalsTex", inputSampState); } } void SSAODownsampleMat::execute(const RendererView& view, const SPtr& depth, const SPtr& normals, const SPtr& destination, float depthRange) { const RendererViewProperties& viewProps = view.getProperties(); const RenderTargetProperties& rtProps = destination->getProperties(); Vector2 pixelSize; pixelSize.x = 1.0f / rtProps.width; pixelSize.y = 1.0f / rtProps.height; float scale = viewProps.viewRect.width / (float)rtProps.width; gSSAODownsampleParamDef.gPixelSize.set(mParamBuffer, pixelSize); gSSAODownsampleParamDef.gInvDepthThreshold.set(mParamBuffer, (1.0f / depthRange) / scale); mDepthTexture.set(depth); mNormalsTexture.set(normals); SPtr perView = view.getPerViewBuffer(); mParams->setParamBlockBuffer("PerCamera", perView); RenderAPI& rapi = RenderAPI::instance(); rapi.setRenderTarget(destination); bind(); gRendererUtility().drawScreenQuad(); } SSAOBlurParamDef gSSAOBlurParamDef; SSAOBlurMat::SSAOBlurMat() { mParamBuffer = gSSAOBlurParamDef.createBuffer(); mParams->setParamBlockBuffer("Input", mParamBuffer); mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gInputTex", mAOTexture); mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gDepthTex", mDepthTexture); SAMPLER_STATE_DESC inputSampDesc; inputSampDesc.minFilter = FO_POINT; inputSampDesc.magFilter = FO_POINT; inputSampDesc.mipFilter = FO_POINT; inputSampDesc.addressMode.u = TAM_CLAMP; inputSampDesc.addressMode.v = TAM_CLAMP; inputSampDesc.addressMode.w = TAM_CLAMP; SPtr inputSampState = SamplerState::create(inputSampDesc); if(mParams->hasSamplerState(GPT_FRAGMENT_PROGRAM, "gInputSamp")) mParams->setSamplerState(GPT_FRAGMENT_PROGRAM, "gInputSamp", inputSampState); else { mParams->setSamplerState(GPT_FRAGMENT_PROGRAM, "gInputTex", inputSampState); mParams->setSamplerState(GPT_FRAGMENT_PROGRAM, "gDepthTex", inputSampState); } } void SSAOBlurMat::execute(const RendererView& view, const SPtr& ao, const SPtr& depth, const SPtr& destination, float depthRange) { const RendererViewProperties& viewProps = view.getProperties(); const TextureProperties& texProps = ao->getProperties(); Vector2 pixelSize; pixelSize.x = 1.0f / texProps.getWidth(); pixelSize.y = 1.0f / texProps.getHeight(); Vector2 pixelOffset(BsZero); if (mVariation.getBool("DIR_HORZ")) pixelOffset.x = pixelSize.x; else pixelOffset.y = pixelSize.y; float scale = viewProps.viewRect.width / (float)texProps.getWidth(); gSSAOBlurParamDef.gPixelSize.set(mParamBuffer, pixelSize); gSSAOBlurParamDef.gPixelOffset.set(mParamBuffer, pixelOffset); gSSAOBlurParamDef.gInvDepthThreshold.set(mParamBuffer, (1.0f / depthRange) / scale); mAOTexture.set(ao); mDepthTexture.set(depth); SPtr perView = view.getPerViewBuffer(); mParams->setParamBlockBuffer("PerCamera", perView); RenderAPI& rapi = RenderAPI::instance(); rapi.setRenderTarget(destination); bind(); gRendererUtility().drawScreenQuad(); } SSAOBlurMat* SSAOBlurMat::getVariation(bool horizontal) { if (horizontal) return get(getVariation()); return get(getVariation()); } SSRStencilParamDef gSSRStencilParamDef; SSRStencilMat::SSRStencilMat() :mGBufferParams(GPT_FRAGMENT_PROGRAM, mParams) { mParamBuffer = gSSRStencilParamDef.createBuffer(); mParams->setParamBlockBuffer("Input", mParamBuffer); } void SSRStencilMat::execute(const RendererView& view, GBufferTextures gbuffer, const ScreenSpaceReflectionsSettings& settings) { mGBufferParams.bind(gbuffer); Vector2 roughnessScaleBias = SSRTraceMat::calcRoughnessFadeScaleBias(settings.maxRoughness); gSSRStencilParamDef.gRoughnessScaleBias.set(mParamBuffer, roughnessScaleBias); SPtr perView = view.getPerViewBuffer(); mParams->setParamBlockBuffer("PerCamera", perView); const RendererViewProperties& viewProps = view.getProperties(); const Rect2I& viewRect = viewProps.viewRect; bind(); if(viewProps.numSamples > 1) gRendererUtility().drawScreenQuad(Rect2(0.0f, 0.0f, (float)viewRect.width, (float)viewRect.height)); else gRendererUtility().drawScreenQuad(); } SSRStencilMat* SSRStencilMat::getVariation(bool msaa, bool singleSampleMSAA) { if (msaa) { if (singleSampleMSAA) return get(getVariation()); return get(getVariation()); } else return get(getVariation()); } SSRTraceParamDef gSSRTraceParamDef; SSRTraceMat::SSRTraceMat() :mGBufferParams(GPT_FRAGMENT_PROGRAM, mParams) { mParamBuffer = gSSRTraceParamDef.createBuffer(); mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gSceneColor", mSceneColorTexture); mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gHiZ", mHiZTexture); if(mParams->hasParamBlock(GPT_FRAGMENT_PROGRAM, "Input")) mParams->setParamBlockBuffer(GPT_FRAGMENT_PROGRAM, "Input", mParamBuffer); SAMPLER_STATE_DESC desc; desc.minFilter = FO_POINT; desc.magFilter = FO_POINT; desc.mipFilter = FO_POINT; desc.addressMode.u = TAM_CLAMP; desc.addressMode.v = TAM_CLAMP; desc.addressMode.w = TAM_CLAMP; SPtr hiZSamplerState = SamplerState::create(desc); if (mParams->hasSamplerState(GPT_FRAGMENT_PROGRAM, "gHiZSamp")) mParams->setSamplerState(GPT_FRAGMENT_PROGRAM, "gHiZSamp", hiZSamplerState); else if(mParams->hasSamplerState(GPT_FRAGMENT_PROGRAM, "gHiZ")) mParams->setSamplerState(GPT_FRAGMENT_PROGRAM, "gHiZ", hiZSamplerState); } void SSRTraceMat::execute(const RendererView& view, GBufferTextures gbuffer, const SPtr& sceneColor, const SPtr& hiZ, const ScreenSpaceReflectionsSettings& settings, const SPtr& destination) { const RendererViewProperties& viewProps = view.getProperties(); const TextureProperties& hiZProps = hiZ->getProperties(); mGBufferParams.bind(gbuffer); mSceneColorTexture.set(sceneColor); mHiZTexture.set(hiZ); Rect2I viewRect = viewProps.viewRect; // Maps from NDC to UV [0, 1] Vector4 ndcToHiZUV; ndcToHiZUV.x = 0.5f; ndcToHiZUV.y = -0.5f; ndcToHiZUV.z = 0.5f; ndcToHiZUV.w = 0.5f; // Either of these flips the Y axis, but if they're both true they cancel out RenderAPI& rapi = RenderAPI::instance(); const RenderAPIInfo& rapiInfo = rapi.getAPIInfo(); if (rapiInfo.isFlagSet(RenderAPIFeatureFlag::UVYAxisUp) ^ rapiInfo.isFlagSet(RenderAPIFeatureFlag::NDCYAxisDown)) ndcToHiZUV.y = -ndcToHiZUV.y; // Maps from [0, 1] to area of HiZ where depth is stored in ndcToHiZUV.x *= (float)viewRect.width / hiZProps.getWidth(); ndcToHiZUV.y *= (float)viewRect.height / hiZProps.getHeight(); ndcToHiZUV.z *= (float)viewRect.width / hiZProps.getWidth(); ndcToHiZUV.w *= (float)viewRect.height / hiZProps.getHeight(); // Maps from HiZ UV to [0, 1] UV Vector2 HiZUVToScreenUV; HiZUVToScreenUV.x = hiZProps.getWidth() / (float)viewRect.width; HiZUVToScreenUV.y = hiZProps.getHeight() / (float)viewRect.height; // Used for roughness fading Vector2 roughnessScaleBias = calcRoughnessFadeScaleBias(settings.maxRoughness); UINT32 temporalJitter = (viewProps.frameIdx % 8) * 1503; Vector2I bufferSize(viewRect.width, viewRect.height); gSSRTraceParamDef.gHiZSize.set(mParamBuffer, bufferSize); gSSRTraceParamDef.gHiZNumMips.set(mParamBuffer, hiZProps.getNumMipmaps()); gSSRTraceParamDef.gNDCToHiZUV.set(mParamBuffer, ndcToHiZUV); gSSRTraceParamDef.gHiZUVToScreenUV.set(mParamBuffer, HiZUVToScreenUV); gSSRTraceParamDef.gIntensity.set(mParamBuffer, settings.intensity); gSSRTraceParamDef.gRoughnessScaleBias.set(mParamBuffer, roughnessScaleBias); gSSRTraceParamDef.gTemporalJitter.set(mParamBuffer, temporalJitter); SPtr perView = view.getPerViewBuffer(); mParams->setParamBlockBuffer("PerCamera", perView); rapi.setRenderTarget(destination, FBT_DEPTH); bind(); if(viewProps.numSamples > 1) gRendererUtility().drawScreenQuad(Rect2(0.0f, 0.0f, (float)viewRect.width, (float)viewRect.height)); else gRendererUtility().drawScreenQuad(); } Vector2 SSRTraceMat::calcRoughnessFadeScaleBias(float maxRoughness) { const static float RANGE_SCALE = 2.0f; Vector2 scaleBias; scaleBias.x = -RANGE_SCALE / (-1.0f + maxRoughness); scaleBias.y = (RANGE_SCALE * maxRoughness) / (-1.0f + maxRoughness); return scaleBias; } SSRTraceMat* SSRTraceMat::getVariation(UINT32 quality, bool msaa, bool singleSampleMSAA) { #define PICK_MATERIAL(QUALITY) \ if(msaa) \ if(singleSampleMSAA) \ return get(getVariation()); \ else \ return get(getVariation()); \ else \ return get(getVariation()); \ switch(quality) { case 0: PICK_MATERIAL(0) case 1: PICK_MATERIAL(1) case 2: PICK_MATERIAL(2) case 3: PICK_MATERIAL(3) default: case 4: PICK_MATERIAL(4) } #undef PICK_MATERIAL } TemporalResolveParamDef gTemporalResolveParamDef; SSRResolveParamDef gSSRResolveParamDef; SSRResolveMat::SSRResolveMat() { mSSRParamBuffer = gSSRResolveParamDef.createBuffer(); mTemporalParamBuffer = gTemporalResolveParamDef.createBuffer(); mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gSceneDepth", mSceneDepthTexture); mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gSceneColor", mSceneColorTexture); mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gPrevColor", mPrevColorTexture); mParams->setParamBlockBuffer(GPT_FRAGMENT_PROGRAM, "Input", mSSRParamBuffer); mParams->setParamBlockBuffer(GPT_FRAGMENT_PROGRAM, "TemporalInput", mTemporalParamBuffer); SAMPLER_STATE_DESC pointSampDesc; pointSampDesc.minFilter = FO_POINT; pointSampDesc.magFilter = FO_POINT; pointSampDesc.mipFilter = FO_POINT; pointSampDesc.addressMode.u = TAM_CLAMP; pointSampDesc.addressMode.v = TAM_CLAMP; pointSampDesc.addressMode.w = TAM_CLAMP; SPtr pointSampState = SamplerState::create(pointSampDesc); if(mParams->hasSamplerState(GPT_FRAGMENT_PROGRAM, "gPointSampler")) mParams->setSamplerState(GPT_FRAGMENT_PROGRAM, "gPointSampler", pointSampState); else mParams->setSamplerState(GPT_FRAGMENT_PROGRAM, "gSceneDepth", pointSampState); SAMPLER_STATE_DESC linearSampDesc; linearSampDesc.minFilter = FO_POINT; linearSampDesc.magFilter = FO_POINT; linearSampDesc.mipFilter = FO_POINT; linearSampDesc.addressMode.u = TAM_CLAMP; linearSampDesc.addressMode.v = TAM_CLAMP; linearSampDesc.addressMode.w = TAM_CLAMP; SPtr linearSampState = SamplerState::create(linearSampDesc); if(mParams->hasSamplerState(GPT_FRAGMENT_PROGRAM, "gLinearSampler")) mParams->setSamplerState(GPT_FRAGMENT_PROGRAM, "gLinearSampler", linearSampState); else { mParams->setSamplerState(GPT_FRAGMENT_PROGRAM, "gSceneColor", linearSampState); mParams->setSamplerState(GPT_FRAGMENT_PROGRAM, "gPrevColor", linearSampState); } } void SSRResolveMat::execute(const RendererView& view, const SPtr& prevFrame, const SPtr& curFrame, const SPtr& sceneDepth, const SPtr& destination) { // Note: This shader should not be called when temporal AA is turned on // Note: This shader doesn't have velocity texture enabled and will only account for camera movement (can be easily // enabled when velocity texture is added) // - WHen added, velocity should use a 16-bit SNORM format mPrevColorTexture.set(prevFrame); mSceneColorTexture.set(curFrame); mSceneDepthTexture.set(sceneDepth); auto& colorProps = curFrame->getProperties(); // Assuming prev and current frame are the same size auto& depthProps = sceneDepth->getProperties(); Vector2 colorPixelSize(1.0f / colorProps.getWidth(), 1.0f / colorProps.getHeight()); Vector2 depthPixelSize(1.0f / depthProps.getWidth(), 1.0f / depthProps.getHeight()); gSSRResolveParamDef.gSceneColorTexelSize.set(mSSRParamBuffer, colorPixelSize); gSSRResolveParamDef.gSceneDepthTexelSize.set(mSSRParamBuffer, depthPixelSize); gSSRResolveParamDef.gManualExposure.set(mSSRParamBuffer, 1.0f); // Generate samples // Note: Move this code to a more general spot where it can be used by other temporal shaders. float sampleWeights[9]; float sampleWeightsLowPass[9]; float totalWeights = 0.0f; float totalWeightsLowPass = 0.0f; Vector2 jitter(BsZero); // Only relevant for general case, not using this type of jitter for SSR // Weights are generated using an exponential fit to Blackman-Harris 3.3 bool useYCoCg = false; // Only relevant for general case, not using it for SSR float sharpness = 1.0f; // Make this a customizable parameter eventually if(useYCoCg) { static const Vector2 sampleOffsets[] = { { 0.0f, -1.0f }, { -1.0f, 0.0f }, { 0.0f, 0.0f }, { 1.0f, 0.0f }, { 0.0f, 1.0f }, }; for (UINT32 i = 0; i < 5; ++i) { // Get rid of jitter introduced by the projection matrix Vector2 offset = sampleOffsets[i] - jitter; offset *= 1.0f + sharpness * 0.5f; sampleWeights[i] = exp(-2.29f * offset.dot(offset)); totalWeights += sampleWeights[i]; } for (UINT32 i = 5; i < 9; ++i) sampleWeights[i] = 0.0f; memset(sampleWeightsLowPass, 0, sizeof(sampleWeightsLowPass)); totalWeightsLowPass = 1.0f; } else { static const Vector2 sampleOffsets[] = { { -1.0f, -1.0f }, { 0.0f, -1.0f }, { 1.0f, -1.0f }, { -1.0f, 0.0f }, { 0.0f, 0.0f }, { 1.0f, 0.0f }, { -1.0f, 1.0f }, { 0.0f, 1.0f }, { 1.0f, 1.0f }, }; for (UINT32 i = 0; i < 9; ++i) { // Get rid of jitter introduced by the projection matrix Vector2 offset = sampleOffsets[i] - jitter; offset *= 1.0f + sharpness * 0.5f; sampleWeights[i] = exp(-2.29f * offset.dot(offset)); totalWeights += sampleWeights[i]; // Low pass offset *= 0.25f; sampleWeightsLowPass[i] = exp(-2.29f * offset.dot(offset)); totalWeightsLowPass += sampleWeightsLowPass[i]; } } for (UINT32 i = 0; i < 9; ++i) { gTemporalResolveParamDef.gSampleWeights.set(mTemporalParamBuffer, sampleWeights[i] / totalWeights, i); gTemporalResolveParamDef.gSampleWeightsLowpass.set(mTemporalParamBuffer, sampleWeightsLowPass[i] / totalWeightsLowPass, i); } SPtr perView = view.getPerViewBuffer(); mParams->setParamBlockBuffer("PerCamera", perView); RenderAPI& rapi = RenderAPI::instance(); rapi.setRenderTarget(destination); const RendererViewProperties& viewProps = view.getProperties(); const Rect2I& viewRect = viewProps.viewRect; bind(); if(viewProps.numSamples > 1) gRendererUtility().drawScreenQuad(Rect2(0.0f, 0.0f, (float)viewRect.width, (float)viewRect.height)); else gRendererUtility().drawScreenQuad(); } SSRResolveMat* SSRResolveMat::getVariation(bool msaa) { if (msaa) return get(getVariation()); else return get(getVariation()); } EncodeDepthParamDef gEncodeDepthParamDef; EncodeDepthMat::EncodeDepthMat() { mParamBuffer = gEncodeDepthParamDef.createBuffer(); mParams->setParamBlockBuffer("Params", mParamBuffer); mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gInputTex", mInputTexture); SAMPLER_STATE_DESC sampDesc; sampDesc.minFilter = FO_POINT; sampDesc.magFilter = FO_POINT; sampDesc.mipFilter = FO_POINT; sampDesc.addressMode.u = TAM_CLAMP; sampDesc.addressMode.v = TAM_CLAMP; sampDesc.addressMode.w = TAM_CLAMP; SPtr samplerState = SamplerState::create(sampDesc); setSamplerState(mParams, GPT_FRAGMENT_PROGRAM, "gInputSamp", "gInputTex", samplerState); } void EncodeDepthMat::execute(const SPtr& depth, float near, float far, const SPtr& output) { mInputTexture.set(depth); gEncodeDepthParamDef.gNear.set(mParamBuffer, near); gEncodeDepthParamDef.gFar.set(mParamBuffer, far); RenderAPI& rapi = RenderAPI::instance(); rapi.setRenderTarget(output, 0, RT_COLOR0); bind(); gRendererUtility().drawScreenQuad(); } MSAACoverageMat::MSAACoverageMat() :mGBufferParams(GPT_FRAGMENT_PROGRAM, mParams) { } void MSAACoverageMat::execute(const RendererView& view, GBufferTextures gbuffer) { mGBufferParams.bind(gbuffer); const Rect2I& viewRect = view.getProperties().viewRect; SPtr perView = view.getPerViewBuffer(); mParams->setParamBlockBuffer("PerCamera", perView); bind(); gRendererUtility().drawScreenQuad(Rect2(0, 0, (float)viewRect.width, (float)viewRect.height)); } MSAACoverageMat* MSAACoverageMat::getVariation(UINT32 msaaCount) { switch(msaaCount) { case 2: return get(getVariation<2>()); case 4: return get(getVariation<4>()); case 8: default: return get(getVariation<8>()); } } MSAACoverageStencilMat::MSAACoverageStencilMat() { mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gMSAACoverage", mCoverageTexParam); } void MSAACoverageStencilMat::execute(const RendererView& view, const SPtr& coverage) { const Rect2I& viewRect = view.getProperties().viewRect; mCoverageTexParam.set(coverage); bind(); gRendererUtility().drawScreenQuad(Rect2(0, 0, (float)viewRect.width, (float)viewRect.height)); } }}