using System;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
namespace BansheeEngine
{
/** @addtogroup Math
* @{
*/
///
/// Generates pseudo random numbers using the Xorshift128 algorithm. Suitable for high performance requirements.
///
[ShowInInspector]
public partial class Random : ScriptObject
{
private Random(bool __dummy0) { }
protected Random() { }
/// Initializes a new generator using the specified seed.
public Random(uint seed = 0)
{
Internal_Random(this, seed);
}
/// Changes the seed of the generator to the specified value.
public void SetSeed(uint seed)
{
Internal_setSeed(mCachedPtr, seed);
}
/// Returns a random value in range [0, std::numeric_limits::max()].
public uint Get()
{
return Internal_get(mCachedPtr);
}
/// Returns a random value in range [min, max].
public int GetRange(int min, int max)
{
return Internal_getRange(mCachedPtr, min, max);
}
/// Returns a random value in range [0, 1].
public float GetUNorm()
{
return Internal_getUNorm(mCachedPtr);
}
/// Returns a random value in range [-1, 1].
public float GetSNorm()
{
return Internal_getSNorm(mCachedPtr);
}
/// Returns a random unit vector in three dimensions.
public Vector3 GetUnitVector()
{
Vector3 temp;
Internal_getUnitVector(mCachedPtr, out temp);
return temp;
}
/// Returns a random unit vector in two dimensions.
public Vector2 GetUnitVector2D()
{
Vector2 temp;
Internal_getUnitVector2D(mCachedPtr, out temp);
return temp;
}
/// Returns a random point inside a unit sphere.
public Vector3 GetPointInSphere()
{
Vector3 temp;
Internal_getPointInSphere(mCachedPtr, out temp);
return temp;
}
///
/// Returns a random point inside the specified range in a sphere shell of unit radius, with the specified thickness, in
/// range [0, 1]. Thickness of 0 will generate points on the sphere surface, while thickness of 1 will generate points
/// within the entire sphere volume. Intermediate values represent the shell, which is a volume between two concentric
/// spheres.
///
public Vector3 GetPointInSphereShell(float thickness)
{
Vector3 temp;
Internal_getPointInSphereShell(mCachedPtr, thickness, out temp);
return temp;
}
/// Returns a random point inside a unit circle.
public Vector2 GetPointInCircle()
{
Vector2 temp;
Internal_getPointInCircle(mCachedPtr, out temp);
return temp;
}
///
/// Returns a random point inside the specified range in a circle shell of unit radius, with the specified thickness, in
/// range [0, 1]. Thickness of 0 will generate points on the circle edge, while thickness of 1 will generate points
/// within the entire circle surface. Intermediate values represent the shell, which is the surface between two
/// concentric circles.
///
public Vector2 GetPointInCircleShell(float thickness)
{
Vector2 temp;
Internal_getPointInCircleShell(mCachedPtr, thickness, out temp);
return temp;
}
///
/// Returns a random point on a unit arc with the specified length (angle). Angle of 360 represents a circle.
///
public Vector2 GetPointInArc(Degree angle)
{
Vector2 temp;
Internal_getPointInArc(mCachedPtr, ref angle, out temp);
return temp;
}
///
/// Returns a random point inside the specified range in an arc shell of unit radius, with the specified length (angle)
/// and thickness in range [0, 1]. Angle of 360 represents a circle shell. Thickness of 0 will generate points on the arc
/// edge, while thickness of 1 will generate points on the entire arc 'slice'. Intermediate vlaues represent the shell,
/// which is the surface between two concentric circles.
///
public Vector2 GetPointInArcShell(Degree angle, float thickness)
{
Vector2 temp;
Internal_getPointInArcShell(mCachedPtr, ref angle, thickness, out temp);
return temp;
}
///
/// Returns a random set of Barycentric coordinates that may be used for generating random points on a triangle.
///
public Vector3 GetBarycentric()
{
Vector3 temp;
Internal_getBarycentric(mCachedPtr, out temp);
return temp;
}
[MethodImpl(MethodImplOptions.InternalCall)]
private static extern void Internal_Random(Random managedInstance, uint seed);
[MethodImpl(MethodImplOptions.InternalCall)]
private static extern void Internal_setSeed(IntPtr thisPtr, uint seed);
[MethodImpl(MethodImplOptions.InternalCall)]
private static extern uint Internal_get(IntPtr thisPtr);
[MethodImpl(MethodImplOptions.InternalCall)]
private static extern int Internal_getRange(IntPtr thisPtr, int min, int max);
[MethodImpl(MethodImplOptions.InternalCall)]
private static extern float Internal_getUNorm(IntPtr thisPtr);
[MethodImpl(MethodImplOptions.InternalCall)]
private static extern float Internal_getSNorm(IntPtr thisPtr);
[MethodImpl(MethodImplOptions.InternalCall)]
private static extern void Internal_getUnitVector(IntPtr thisPtr, out Vector3 __output);
[MethodImpl(MethodImplOptions.InternalCall)]
private static extern void Internal_getUnitVector2D(IntPtr thisPtr, out Vector2 __output);
[MethodImpl(MethodImplOptions.InternalCall)]
private static extern void Internal_getPointInSphere(IntPtr thisPtr, out Vector3 __output);
[MethodImpl(MethodImplOptions.InternalCall)]
private static extern void Internal_getPointInSphereShell(IntPtr thisPtr, float thickness, out Vector3 __output);
[MethodImpl(MethodImplOptions.InternalCall)]
private static extern void Internal_getPointInCircle(IntPtr thisPtr, out Vector2 __output);
[MethodImpl(MethodImplOptions.InternalCall)]
private static extern void Internal_getPointInCircleShell(IntPtr thisPtr, float thickness, out Vector2 __output);
[MethodImpl(MethodImplOptions.InternalCall)]
private static extern void Internal_getPointInArc(IntPtr thisPtr, ref Degree angle, out Vector2 __output);
[MethodImpl(MethodImplOptions.InternalCall)]
private static extern void Internal_getPointInArcShell(IntPtr thisPtr, ref Degree angle, float thickness, out Vector2 __output);
[MethodImpl(MethodImplOptions.InternalCall)]
private static extern void Internal_getBarycentric(IntPtr thisPtr, out Vector3 __output);
}
/** @} */
}