/* ----------------------------------------------------------------------------- This source file is part of OGRE (Object-oriented Graphics Rendering Engine) For the latest info, see http://www.ogre3d.org/ Copyright (c) 2000-2011 Torus Knot Software Ltd Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------------- */ #pragma once #include "CmPrerequisitesUtil.h" #include "CmMath.h" namespace CamelotFramework { class CM_UTILITY_EXPORT Vector3 { public: float x, y, z; public: Vector3() { } Vector3(float x, float y, float z) : x(x), y(y), z(z) { } /** * @brief Exchange the contents of this vector with another. */ void swap(Vector3& other) { std::swap(x, other.x); std::swap(y, other.y); std::swap(z, other.z); } float operator[] (size_t i) const { assert(i < 3); return *(&x+i); } float& operator[] (size_t i) { assert(i < 3); return *(&x+i); } float* ptr() { return &x; } const float* ptr() const { return &x; } Vector3& operator= (const Vector3& rhs) { x = rhs.x; y = rhs.y; z = rhs.z; return *this; } Vector3& operator= (float rhs) { x = rhs; y = rhs; z = rhs; return *this; } bool operator== (const Vector3& rhs) const { return (x == rhs.x && y == rhs.y && z == rhs.z); } bool operator!= (const Vector3& rhs) const { return (x != rhs.x || y != rhs.y || z != rhs.z); } Vector3 operator+ (const Vector3& rhs) const { return Vector3(x + rhs.x, y + rhs.y, z + rhs.z); } Vector3 operator- (const Vector3& rhs) const { return Vector3(x - rhs.x, y - rhs.y, z - rhs.z); } Vector3 operator* (float rhs) const { return Vector3(x * rhs, y * rhs, z * rhs); } Vector3 operator* (const Vector3& rhs) const { return Vector3(x * rhs.x, y * rhs.y, z * rhs.z); } Vector3 operator/ (float val) const { assert(val != 0.0); float fInv = 1.0f / val; return Vector3(x * fInv, y * fInv, z * fInv); } Vector3 operator/ (const Vector3& rhs) const { return Vector3(x / rhs.x, y / rhs.y, z / rhs.z); } const Vector3& operator+ () const { return *this; } Vector3 operator- () const { return Vector3(-x, -y, -z); } friend Vector3 operator* (float lhs, const Vector3& rhs) { return Vector3(lhs * rhs.x, lhs * rhs.y, lhs * rhs.z); } friend Vector3 operator/ (float lhs, const Vector3& rhs) { return Vector3(lhs / rhs.x, lhs / rhs.y, lhs / rhs.z); } friend Vector3 operator+ (const Vector3& lhs, float rhs) { return Vector3(lhs.x + rhs, lhs.y + rhs, lhs.z + rhs); } friend Vector3 operator+ (float lhs, const Vector3& rhs) { return Vector3(lhs + rhs.x, lhs + rhs.y, lhs + rhs.z); } friend Vector3 operator- (const Vector3& lhs, float rhs) { return Vector3(lhs.x - rhs, lhs.y - rhs, lhs.z - rhs); } friend Vector3 operator- (float lhs, const Vector3& rhs) { return Vector3(lhs - rhs.x, lhs - rhs.y, lhs - rhs.z); } Vector3& operator+= (const Vector3& rhs) { x += rhs.x; y += rhs.y; z += rhs.z; return *this; } Vector3& operator+= (float rhs) { x += rhs; y += rhs; z += rhs; return *this; } Vector3& operator-= (const Vector3& rhs) { x -= rhs.x; y -= rhs.y; z -= rhs.z; return *this; } Vector3& operator-= (float rhs) { x -= rhs; y -= rhs; z -= rhs; return *this; } Vector3& operator*= (float rhs) { x *= rhs; y *= rhs; z *= rhs; return *this; } Vector3& operator*= (const Vector3& rhs) { x *= rhs.x; y *= rhs.y; z *= rhs.z; return *this; } Vector3& operator/= (float rhs) { assert(rhs != 0.0f); float inv = 1.0f / rhs; x *= inv; y *= inv; z *= inv; return *this; } Vector3& operator/= (const Vector3& rhs) { x /= rhs.x; y /= rhs.y; z /= rhs.z; return *this; } /** * @brief Returns the length (magnitude) of the vector. */ float length() const { return Math::sqrt(x * x + y * y + z * z); } /** * @brief Returns the square of the length(magnitude) of the vector. */ float squaredLength() const { return x * x + y * y + z * z; } /** * @brief Returns the distance to another vector. */ float distance(const Vector3& rhs) const { return (*this - rhs).length(); } /** * @brief Returns the square of the distance to another vector. */ float squaredDistance(const Vector3& rhs) const { return (*this - rhs).squaredLength(); } /** * @brief Calculates the dot (scalar) product of this vector with another */ float dot(const Vector3& vec) const { return x * vec.x + y * vec.y + z * vec.z; } /** * @brief Normalizes the vector. */ float normalize() { float len = Math::sqrt(x * x + y * y + z * z); // Will also work for zero-sized vectors, but will change nothing if (len > 1e-08) { float invLen = 1.0f / len; x *= invLen; y *= invLen; z *= invLen; } return len; } /** * @brief Calculates the cross-product of 2 vectors, i.e. the vector that * lies perpendicular to them both. */ Vector3 cross(const Vector3& other) const { return Vector3( y * other.z - z * other.y, z * other.x - x * other.z, x * other.y - y * other.x); } /** * @brief Sets this vector's components to the minimum of its own and the * ones of the passed in vector. */ void floor(const Vector3& cmp) { if(cmp.x < x) x = cmp.x; if(cmp.y < y) y = cmp.y; if(cmp.z < z) z = cmp.z; } /** * @brief Sets this vector's components to the maximum of its own and the * ones of the passed in vector. */ void ceil(const Vector3& cmp) { if(cmp.x > x) x = cmp.x; if(cmp.y > y) y = cmp.y; if(cmp.z > z) z = cmp.z; } /** * @brief Generates a vector perpendicular to this vector. */ Vector3 perpendicular() const { static const float squareZero = (float)(1e-06 * 1e-06); Vector3 perp = this->cross(Vector3::UNIT_X); if(perp.squaredLength() < squareZero) perp = this->cross(Vector3::UNIT_Y); perp.normalize(); return perp; } /** * @brief Gets the angle between 2 vectors. */ Radian angleBetween(const Vector3& dest) { float lenProduct = length() * dest.length(); // Divide by zero check if(lenProduct < 1e-6f) lenProduct = 1e-6f; float f = dot(dest) / lenProduct; f = Math::clamp(f, -1.0f, 1.0f); return Math::acos(f); } /** * @brief Returns true if this vector is zero length. */ bool isZeroLength() const { float sqlen = (x * x) + (y * y) + (z * z); return (sqlen < (1e-06 * 1e-06)); } /** * @brief Calculates a reflection vector to the plane with the given normal. */ Vector3 reflect(const Vector3& normal) const { return Vector3(*this - (2 * this->dot(normal) * normal)); } /** * @brief Performs Gram-Schmidt orthonormalization */ static void orthonormalize(Vector3& vec0, Vector3& vec1, Vector3& vec2) { vec0.normalize(); float dot0 = vec0.dot(vec1); vec1 -= dot0*vec0; vec1.normalize(); float dot1 = vec1.dot(vec2); dot0 = vec0.dot(vec2); vec2 -= dot0*vec0 + dot1*vec1; vec2.normalize(); } static Vector3 normalize(const Vector3& val) { float len = Math::sqrt(val.x * val.x + val.y * val.y + val.z * val.z); // Will also work for zero-sized vectors, but will change nothing if (len > 1e-08) { float invLen = 1.0f / len; Vector3 normalizedVec; normalizedVec.x = val.x * invLen; normalizedVec.y = val.y * invLen; normalizedVec.z = val.z * invLen; return normalizedVec; } else return val; } bool isNaN() const { return Math::isNaN(x) || Math::isNaN(y) || Math::isNaN(z); } static Vector3 min(const Vector3& a, const Vector3& b) { return Vector3(std::min(a.x, b.x), std::min(a.y, b.y), std::min(a.z, b.z)); } static Vector3 max(const Vector3& a, const Vector3& b) { return Vector3(std::max(a.x, b.x), std::max(a.y, b.y), std::max(a.z, b.z)); } static const Vector3 ZERO; static const Vector3 ONE; static const Vector3 UNIT_X; static const Vector3 UNIT_Y; static const Vector3 UNIT_Z; }; CM_ALLOW_MEMCPY_SERIALIZATION(Vector3); }