TiledDeferredImageBasedLighting.bsl 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305
  1. #include "$ENGINE$\GBufferInput.bslinc"
  2. #include "$ENGINE$\PerCameraData.bslinc"
  3. #include "$ENGINE$\ReflectionCubemapCommon.bslinc"
  4. #define USE_COMPUTE_INDICES 1
  5. #include "$ENGINE$\LightingCommon.bslinc"
  6. #include "$ENGINE$\ImageBasedLighting.bslinc"
  7. technique TiledDeferredImageBasedLighting
  8. {
  9. mixin GBufferInput;
  10. mixin PerCameraData;
  11. mixin LightingCommon;
  12. mixin ReflectionCubemapCommon;
  13. mixin ImageBasedLighting;
  14. mixin ReflProbeAccumulatorIndexed;
  15. variations
  16. {
  17. MSAA_COUNT = { 1, 2, 4, 8 };
  18. };
  19. code
  20. {
  21. [internal]
  22. cbuffer Params : register(b0)
  23. {
  24. uint2 gFramebufferSize;
  25. }
  26. #if MSAA_COUNT > 1
  27. Texture2DMS<float4> gInColor;
  28. RWBuffer<float4> gOutput;
  29. Texture2D gMSAACoverage;
  30. uint getLinearAddress(uint2 coord, uint sampleIndex)
  31. {
  32. return (coord.y * gFramebufferSize.x + coord.x) * MSAA_COUNT + sampleIndex;
  33. }
  34. void writeBufferSample(uint2 coord, uint sampleIndex, float4 color)
  35. {
  36. uint idx = getLinearAddress(coord, sampleIndex);
  37. gOutput[idx] = color;
  38. }
  39. #else
  40. Texture2D<float4> gInColor;
  41. RWTexture2D<float4> gOutput;
  42. #endif
  43. groupshared uint sTileMinZ;
  44. groupshared uint sTileMaxZ;
  45. void getTileZBounds(uint threadIndex, SurfaceData surfaceData[MSAA_COUNT], out float minTileZ, out float maxTileZ)
  46. {
  47. // Note: To improve performance perhaps:
  48. // - Use halfZ (split depth range into two regions for better culling)
  49. // - Use parallel reduction instead of atomics
  50. uint sampleMinZ = 0x7F7FFFFF;
  51. uint sampleMaxZ = 0;
  52. #if MSAA_COUNT > 1
  53. [unroll]
  54. for(uint i = 0; i < MSAA_COUNT; ++i)
  55. {
  56. sampleMinZ = min(sampleMinZ, asuint(-surfaceData[i].depth));
  57. sampleMaxZ = max(sampleMaxZ, asuint(-surfaceData[i].depth));
  58. }
  59. #else
  60. sampleMinZ = asuint(-surfaceData[0].depth);
  61. sampleMaxZ = asuint(-surfaceData[0].depth);
  62. #endif
  63. // Set initial values
  64. if(threadIndex == 0)
  65. {
  66. sTileMinZ = 0x7F7FFFFF;
  67. sTileMaxZ = 0;
  68. }
  69. GroupMemoryBarrierWithGroupSync();
  70. // Determine minimum and maximum depth values for a tile
  71. InterlockedMin(sTileMinZ, sampleMinZ);
  72. InterlockedMax(sTileMaxZ, sampleMaxZ);
  73. GroupMemoryBarrierWithGroupSync();
  74. minTileZ = -asfloat(sTileMinZ);
  75. maxTileZ = -asfloat(sTileMaxZ);
  76. }
  77. void calcTileAABB(uint2 tileId, float viewZMin, float viewZMax, out float3 center, out float3 extent)
  78. {
  79. uint2 pixelPos = tileId * TILE_SIZE;
  80. // OpenGL uses lower left for window space origin
  81. #ifdef OPENGL
  82. pixelPos.y = gFramebufferSize.y - pixelPos.y;
  83. #endif
  84. // Convert thread XY coordinates to NDC coordinates
  85. float2 uvTopLeft = (pixelPos + 0.5f) / gFramebufferSize;
  86. float2 uvBottomRight = (pixelPos + uint2(TILE_SIZE, TILE_SIZE) - 0.5f) / gFramebufferSize;
  87. float3 ndcMin;
  88. float3 ndcMax;
  89. ndcMin.xy = uvTopLeft * 2.0f - float2(1.0f, 1.0f);
  90. ndcMax.xy = uvBottomRight * 2.0f - float2(1.0f, 1.0f);
  91. // Flip Y depending on render API, depending if Y in NDC is facing up or down
  92. // (We negate the value because we want NDC with Y flipped, so origin is top left)
  93. float flipY = -sign(gMatProj[1][1]);
  94. ndcMin.y *= flipY;
  95. ndcMax.y *= flipY;
  96. ndcMin.z = convertToNDCZ(viewZMin);
  97. ndcMax.z = convertToNDCZ(viewZMax);
  98. float4 corner[8];
  99. // Far
  100. corner[0] = mul(gMatInvProj, float4(ndcMin.x, ndcMin.y, ndcMax.z, 1.0f));
  101. corner[1] = mul(gMatInvProj, float4(ndcMax.x, ndcMin.y, ndcMax.z, 1.0f));
  102. corner[2] = mul(gMatInvProj, float4(ndcMax.x, ndcMax.y, ndcMax.z, 1.0f));
  103. corner[3] = mul(gMatInvProj, float4(ndcMin.x, ndcMax.y, ndcMax.z, 1.0f));
  104. // Near
  105. corner[4] = mul(gMatInvProj, float4(ndcMin.x, ndcMin.y, ndcMin.z, 1.0f));
  106. corner[5] = mul(gMatInvProj, float4(ndcMax.x, ndcMin.y, ndcMin.z, 1.0f));
  107. corner[6] = mul(gMatInvProj, float4(ndcMax.x, ndcMax.y, ndcMin.z, 1.0f));
  108. corner[7] = mul(gMatInvProj, float4(ndcMin.x, ndcMax.y, ndcMin.z, 1.0f));
  109. [unroll]
  110. for(uint i = 0; i < 8; ++i)
  111. corner[i].xy /= corner[i].w;
  112. // Flip min/max because min = closest to view plane and max = furthest from view plane
  113. // but since Z is negative, closest is in fact the maximum and furtest is the minimum
  114. float3 viewMin = float3(corner[0].xy, viewZMax);
  115. float3 viewMax = float3(corner[0].xy, viewZMin);
  116. [unroll]
  117. for(uint i = 1; i < 8; ++i)
  118. {
  119. viewMin.xy = min(viewMin.xy, corner[i].xy);
  120. viewMax.xy = max(viewMax.xy, corner[i].xy);
  121. }
  122. extent = (viewMax - viewMin) * 0.5f;
  123. center = viewMin + extent;
  124. }
  125. bool intersectSphereBox(float3 sCenter, float sRadius, float3 bCenter, float3 bExtents)
  126. {
  127. float3 closestOnBox = max(0, abs(bCenter - sCenter) - bExtents);
  128. return dot(closestOnBox, closestOnBox) < sRadius * sRadius;
  129. }
  130. float4 getLighting(uint2 pixelPos, float2 uv, uint sampleIdx, float2 clipSpacePos, SurfaceData surfaceData, uint probeOffset, uint numProbes)
  131. {
  132. // x, y are now in clip space, z, w are in view space
  133. // We multiply them by a special inverse view-projection matrix, that had the projection entries that effect
  134. // z, w eliminated (since they are already in view space)
  135. // Note: Multiply by depth should be avoided if using ortographic projection
  136. float4 mixedSpacePos = float4(clipSpacePos * -surfaceData.depth, surfaceData.depth, 1);
  137. float4 worldPosition4D = mul(gMatScreenToWorld, mixedSpacePos);
  138. float3 worldPosition = worldPosition4D.xyz / worldPosition4D.w;
  139. float3 V = normalize(gViewOrigin - worldPosition);
  140. float3 N = surfaceData.worldNormal.xyz;
  141. float3 R = 2 * dot(V, N) * N - V;
  142. float3 specR = getSpecularDominantDir(N, R, surfaceData.roughness);
  143. float4 existingColor;
  144. #if MSAA_COUNT > 1
  145. existingColor = gInColor.Load(pixelPos.xy, sampleIdx);
  146. #else
  147. existingColor = gInColor.Load(int3(pixelPos.xy, 0));
  148. #endif
  149. float ao = gAmbientOcclusionTex.SampleLevel(gAmbientOcclusionSamp, uv, 0.0f).r;
  150. float4 ssr = gSSRTex.SampleLevel(gSSRSamp, uv, 0.0f);
  151. float3 imageBasedSpecular = getImageBasedSpecular(worldPosition, V, specR, surfaceData, ao, ssr, probeOffset, numProbes);
  152. float4 totalLighting = existingColor;
  153. totalLighting.rgb += imageBasedSpecular;
  154. return totalLighting;
  155. }
  156. groupshared uint gUnsortedProbeIndices[MAX_PROBES];
  157. groupshared uint sNumProbes;
  158. [numthreads(TILE_SIZE, TILE_SIZE, 1)]
  159. void csmain(
  160. uint3 groupId : SV_GroupID,
  161. uint3 groupThreadId : SV_GroupThreadID,
  162. uint3 dispatchThreadId : SV_DispatchThreadID)
  163. {
  164. uint threadIndex = groupThreadId.y * TILE_SIZE + groupThreadId.x;
  165. uint2 pixelPos = dispatchThreadId.xy + gViewportRectangle.xy;
  166. // Get data for all samples
  167. SurfaceData surfaceData[MSAA_COUNT];
  168. #if MSAA_COUNT > 1
  169. [unroll]
  170. for(uint i = 0; i < MSAA_COUNT; ++i)
  171. surfaceData[i] = getGBufferData(pixelPos, i);
  172. #else
  173. surfaceData[0] = getGBufferData(pixelPos);
  174. #endif
  175. // Set initial values
  176. if(threadIndex == 0)
  177. sNumProbes = 0;
  178. // Determine per-pixel minimum and maximum depth values
  179. float minTileZ, maxTileZ;
  180. getTileZBounds(threadIndex, surfaceData, minTileZ, maxTileZ);
  181. // Create AABB for the current tile
  182. float3 center, extent;
  183. calcTileAABB(groupId.xy, minTileZ, maxTileZ, center, extent);
  184. // Find probes overlapping the tile
  185. for (uint i = threadIndex; i < gNumProbes && i < MAX_PROBES; i += TILE_SIZE)
  186. {
  187. float4 probePosition = mul(gMatView, float4(gReflectionProbes[i].position, 1.0f));
  188. float probeRadius = gReflectionProbes[i].radius;
  189. if(intersectSphereBox(probePosition, probeRadius, center, extent))
  190. {
  191. uint idx;
  192. InterlockedAdd(sNumProbes, 1U, idx);
  193. gUnsortedProbeIndices[idx] = i;
  194. }
  195. }
  196. GroupMemoryBarrierWithGroupSync();
  197. // Sort based on original indices. Using parallel enumeration sort (n^2) - could be faster
  198. const uint numThreads = TILE_SIZE * TILE_SIZE;
  199. for (uint i = threadIndex; i < sNumProbes; i += numThreads)
  200. {
  201. int idx = gUnsortedProbeIndices[i];
  202. uint smallerCount = 0;
  203. for (uint j = 0; j < sNumProbes; j++)
  204. {
  205. int otherIdx = gUnsortedProbeIndices[j];
  206. if (otherIdx < idx)
  207. smallerCount++;
  208. }
  209. gReflectionProbeIndices[smallerCount] = gUnsortedProbeIndices[i];
  210. }
  211. GroupMemoryBarrierWithGroupSync();
  212. // Generate world position
  213. float2 screenUv = ((float2)(gViewportRectangle.xy + pixelPos) + 0.5f) / (float2)gViewportRectangle.zw;
  214. float2 clipSpacePos = (screenUv - gClipToUVScaleOffset.zw) / gClipToUVScaleOffset.xy;
  215. uint2 viewportMax = gViewportRectangle.xy + gViewportRectangle.zw;
  216. // Ignore pixels out of valid range
  217. if (all(dispatchThreadId.xy < viewportMax))
  218. {
  219. #if MSAA_COUNT > 1
  220. float coverage = gMSAACoverage.Load(int3(pixelPos, 0)).r;
  221. float4 lighting = getLighting(pixelPos, screenUv, 0, clipSpacePos.xy, surfaceData[0], 0, sNumProbes);
  222. writeBufferSample(pixelPos, 0, lighting);
  223. bool doPerSampleShading = coverage > 0.5f;
  224. if(doPerSampleShading)
  225. {
  226. [unroll]
  227. for(uint i = 1; i < MSAA_COUNT; ++i)
  228. {
  229. lighting = getLighting(pixelPos, screenUv, i, clipSpacePos.xy, surfaceData[i], 0, sNumProbes);
  230. writeBufferSample(pixelPos, i, lighting);
  231. }
  232. }
  233. else // Splat same information to all samples
  234. {
  235. // Note: The splatting step can be skipped if we account for coverage when resolving. However
  236. // the coverage texture potentially becomes invalid after transparent geometry is renedered,
  237. // so we need to resolve all samples. Consider getting around this issue somehow.
  238. [unroll]
  239. for(uint i = 1; i < MSAA_COUNT; ++i)
  240. writeBufferSample(pixelPos, i, lighting);
  241. }
  242. #else
  243. float4 lighting = getLighting(pixelPos, screenUv, 0, clipSpacePos.xy, surfaceData[0], 0, sNumProbes);
  244. gOutput[pixelPos] = lighting;
  245. #endif
  246. }
  247. }
  248. };
  249. };