LightGridLLCreation.bsl 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160
  1. #include "$ENGINE$\PerCameraData.bslinc"
  2. #define USE_LIGHT_GRID_INDICES 1
  3. #include "$ENGINE$\LightingCommon.bslinc"
  4. #include "$ENGINE$\ImageBasedLighting.bslinc"
  5. #include "$ENGINE$\LightGridCommon.bslinc"
  6. technique LightGridLLCreation
  7. {
  8. mixin PerCameraData;
  9. mixin LightingCommon;
  10. mixin LightGridCommon;
  11. mixin ImageBasedLighting;
  12. code
  13. {
  14. [layout(r32ui)]
  15. RWBuffer<uint> gLightsCounter;
  16. [layout(r32ui)]
  17. RWBuffer<uint> gLightsLLHeads;
  18. RWBuffer<uint4> gLightsLL;
  19. [layout(r32ui)]
  20. RWBuffer<uint> gProbesCounter;
  21. [layout(r32ui)]
  22. RWBuffer<uint> gProbesLLHeads;
  23. RWBuffer<uint2> gProbesLL;
  24. // Generates a an axis aligned bounding box in NDC and transforms it to view space.
  25. // Note: This will overlap other cells, so it might be better to use frustum planes
  26. // instead of AABB, although frustum testing procedure could result in more false positive
  27. void calcCellAABB(uint3 cellIdx, out float3 center, out float3 extent)
  28. {
  29. // Note:: AABB calculation in tiled deferred image based lighting shader uses less instructions than this,
  30. // see if it can be applied here.
  31. // Convert grid XY coordinates to clip coordinates
  32. float2 a = 2.0f / gGridSize.xy;
  33. float3 ndcMin;
  34. float3 ndcMax;
  35. ndcMin.xy = cellIdx.xy * a - float2(1.0f, 1.0f);
  36. ndcMax.xy = (cellIdx.xy + 1) * a - float2(1.0f, 1.0f);
  37. // Flip Y depending on render API, depending if Y in NDC is facing up or down
  38. // (We negate the value because we want NDC with Y flipped, so origin is top left)
  39. float flipY = -sign(gMatProj[1][1]);
  40. ndcMin.y *= flipY;
  41. ndcMax.y *= flipY;
  42. // Because we're viewing along negative Z, farther end is the minimum
  43. float viewZMin = calcViewZFromCellZ(cellIdx.z + 1);
  44. float viewZMax = calcViewZFromCellZ(cellIdx.z);
  45. ndcMin.z = convertToNDCZ(viewZMax);
  46. ndcMax.z = convertToNDCZ(viewZMin);
  47. float4 corner[8];
  48. // Near
  49. corner[0] = mul(gMatInvProj, float4(ndcMin.x, ndcMin.y, ndcMin.z, 1.0f));
  50. corner[1] = mul(gMatInvProj, float4(ndcMax.x, ndcMin.y, ndcMin.z, 1.0f));
  51. corner[2] = mul(gMatInvProj, float4(ndcMax.x, ndcMax.y, ndcMin.z, 1.0f));
  52. corner[3] = mul(gMatInvProj, float4(ndcMin.x, ndcMax.y, ndcMin.z, 1.0f));
  53. // Far
  54. corner[4] = mul(gMatInvProj, float4(ndcMin.x, ndcMin.y, ndcMax.z, 1.0f));
  55. corner[5] = mul(gMatInvProj, float4(ndcMax.x, ndcMin.y, ndcMax.z, 1.0f));
  56. corner[6] = mul(gMatInvProj, float4(ndcMax.x, ndcMax.y, ndcMax.z, 1.0f));
  57. corner[7] = mul(gMatInvProj, float4(ndcMin.x, ndcMax.y, ndcMax.z, 1.0f));
  58. [unroll]
  59. for(uint i = 0; i < 8; ++i)
  60. corner[i].xy /= corner[i].w;
  61. float3 viewMin = float3(corner[0].xy, viewZMin);
  62. float3 viewMax = float3(corner[0].xy, viewZMax);
  63. [unroll]
  64. for(uint i = 1; i < 8; ++i)
  65. {
  66. viewMin.xy = min(viewMin.xy, corner[i].xy);
  67. viewMax.xy = max(viewMax.xy, corner[i].xy);
  68. }
  69. extent = (viewMax - viewMin) * 0.5f;
  70. center = viewMin + extent;
  71. }
  72. [numthreads(THREADGROUP_SIZE, THREADGROUP_SIZE, THREADGROUP_SIZE)]
  73. void csmain(
  74. uint3 groupId : SV_GroupID,
  75. uint3 groupThreadId : SV_GroupThreadID,
  76. uint3 dispatchThreadId : SV_DispatchThreadID)
  77. {
  78. // Ignore pixels out of valid range
  79. if (any(dispatchThreadId.xy >= gGridSize.xy))
  80. return;
  81. uint maxNumLinks = gNumCells * gMaxNumLightsPerCell;
  82. uint cellIdx = (dispatchThreadId.z * gGridSize.y + dispatchThreadId.y) * gGridSize.x + dispatchThreadId.x;
  83. float3 cellCenter;
  84. float3 cellExtent;
  85. calcCellAABB(dispatchThreadId, cellCenter, cellExtent);
  86. for(uint type = 1; type < 3; ++type)
  87. {
  88. uint lightsStart = gLightStrides[type - 1];
  89. uint lightsEnd = lightsStart + gLightCounts[type];
  90. for(uint i = lightsStart; i < lightsEnd; ++i)
  91. {
  92. float4 lightPosition = mul(gMatView, float4(gLights[i].position, 1.0f));
  93. float lightRadius = gLights[i].attRadius;
  94. // Calculate distance from box to light
  95. float3 distances = max(abs(lightPosition - cellCenter) - cellExtent, 0);
  96. float distSqrd = dot(distances, distances);
  97. if(distSqrd <= (lightRadius * lightRadius))
  98. {
  99. uint nextLink;
  100. InterlockedAdd(gLightsCounter[0], 1U, nextLink);
  101. if(nextLink < maxNumLinks)
  102. {
  103. uint prevLink;
  104. InterlockedExchange(gLightsLLHeads[cellIdx], nextLink, prevLink);
  105. gLightsLL[nextLink] = uint4(i, type, prevLink, 0);
  106. }
  107. }
  108. }
  109. }
  110. for(uint i = 0; i < gNumReflProbes; ++i)
  111. {
  112. float4 probePosition = mul(gMatView, float4(gReflectionProbes[i].position, 1.0f));
  113. float probeRadius = gReflectionProbes[i].radius;
  114. // Calculate distance from box to light
  115. float3 distances = max(abs(probePosition - cellCenter) - cellExtent, 0);
  116. float distSqrd = dot(distances, distances);
  117. if(distSqrd <= (probeRadius * probeRadius))
  118. {
  119. uint nextLink;
  120. InterlockedAdd(gProbesCounter[0], 1U, nextLink);
  121. if(nextLink < maxNumLinks)
  122. {
  123. uint prevLink;
  124. InterlockedExchange(gProbesLLHeads[cellIdx], nextLink, prevLink);
  125. gProbesLL[nextLink] = uint2(i, prevLink);
  126. }
  127. }
  128. }
  129. }
  130. };
  131. };