TiledDeferredLighting.bsl 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292
  1. #include "$ENGINE$\GBufferInput.bslinc"
  2. #include "$ENGINE$\PerCameraData.bslinc"
  3. #define USE_COMPUTE_INDICES 1
  4. #include "$ENGINE$\LightingCommon.bslinc"
  5. #include "$ENGINE$\ReflectionCubemapCommon.bslinc"
  6. #include "$ENGINE$\ImageBasedLighting.bslinc"
  7. technique TiledDeferredLighting
  8. {
  9. mixin GBufferInput;
  10. mixin PerCameraData;
  11. mixin LightingCommon;
  12. mixin ReflectionCubemapCommon;
  13. mixin ImageBasedLighting;
  14. code
  15. {
  16. [internal]
  17. cbuffer Params
  18. {
  19. // Number of lights per type in the lights buffer
  20. // x - directional lights, y - radial lights, z - spot lights, w - total number of lights
  21. uint4 gLightCounts;
  22. // Strides between different light types in the light buffer
  23. // x - stride to radial lights, y - stride to spot lights. Directional lights are assumed to start at 0.
  24. uint2 gLightStrides;
  25. uint2 gFramebufferSize;
  26. }
  27. #if MSAA_COUNT > 1
  28. RWBuffer<float4> gOutput;
  29. Texture2D gMSAACoverage;
  30. uint getLinearAddress(uint2 coord, uint sampleIndex)
  31. {
  32. return (coord.y * gFramebufferSize.x + coord.x) * MSAA_COUNT + sampleIndex;
  33. }
  34. void writeBufferSample(uint2 coord, uint sampleIndex, float4 color)
  35. {
  36. uint idx = getLinearAddress(coord, sampleIndex);
  37. gOutput[idx] = color;
  38. }
  39. #else
  40. RWTexture2D<float4> gOutput;
  41. #endif
  42. groupshared uint sTileMinZ;
  43. groupshared uint sTileMaxZ;
  44. groupshared uint sNumLightsPerType[2];
  45. groupshared uint sTotalNumLights;
  46. float4 getLighting(float2 clipSpacePos, SurfaceData surfaceData)
  47. {
  48. // x, y are now in clip space, z, w are in view space
  49. // We multiply them by a special inverse view-projection matrix, that had the projection entries that effect
  50. // z, w eliminated (since they are already in view space)
  51. // Note: Multiply by depth should be avoided if using ortographic projection
  52. float4 mixedSpacePos = float4(clipSpacePos * -surfaceData.depth, surfaceData.depth, 1);
  53. float4 worldPosition4D = mul(gMatScreenToWorld, mixedSpacePos);
  54. float3 worldPosition = worldPosition4D.xyz / worldPosition4D.w;
  55. uint4 lightOffsets;
  56. lightOffsets.x = gLightCounts[0];
  57. lightOffsets.y = 0;
  58. lightOffsets.z = sNumLightsPerType[0];
  59. lightOffsets.w = sTotalNumLights;
  60. float3 V = normalize(gViewOrigin - worldPosition);
  61. float3 N = surfaceData.worldNormal.xyz;
  62. float3 R = 2 * dot(V, N) * N - V;
  63. float3 specR = getSpecularDominantDir(N, R, surfaceData.roughness);
  64. return getDirectLighting(worldPosition, V, specR, surfaceData, lightOffsets);
  65. }
  66. [numthreads(TILE_SIZE, TILE_SIZE, 1)]
  67. void csmain(
  68. uint3 groupId : SV_GroupID,
  69. uint3 groupThreadId : SV_GroupThreadID,
  70. uint3 dispatchThreadId : SV_DispatchThreadID)
  71. {
  72. uint threadIndex = groupThreadId.y * TILE_SIZE + groupThreadId.x;
  73. uint2 pixelPos = dispatchThreadId.xy + gViewportRectangle.xy;
  74. // Note: To improve performance perhaps:
  75. // - Use halfZ (split depth range into two regions for better culling)
  76. // - Use parallel reduction instead of atomics
  77. // - Use AABB instead of frustum (no false positives)
  78. // - Increase tile size to 32x32 to amortize the cost of AABB calc (2x if using halfZ)
  79. // Get data for all samples, and determine per-pixel minimum and maximum depth values
  80. SurfaceData surfaceData[MSAA_COUNT];
  81. uint sampleMinZ = 0x7F7FFFFF;
  82. uint sampleMaxZ = 0;
  83. #if MSAA_COUNT > 1
  84. [unroll]
  85. for(uint i = 0; i < MSAA_COUNT; ++i)
  86. {
  87. surfaceData[i] = getGBufferData(pixelPos, i);
  88. sampleMinZ = min(sampleMinZ, asuint(-surfaceData[i].depth));
  89. sampleMaxZ = max(sampleMaxZ, asuint(-surfaceData[i].depth));
  90. }
  91. #else
  92. surfaceData[0] = getGBufferData(pixelPos);
  93. sampleMinZ = asuint(-surfaceData[0].depth);
  94. sampleMaxZ = asuint(-surfaceData[0].depth);
  95. #endif
  96. // Set initial values
  97. if(threadIndex == 0)
  98. {
  99. sTileMinZ = 0x7F7FFFFF;
  100. sTileMaxZ = 0;
  101. sNumLightsPerType[0] = 0;
  102. sNumLightsPerType[1] = 0;
  103. sTotalNumLights = 0;
  104. }
  105. GroupMemoryBarrierWithGroupSync();
  106. // Determine minimum and maximum depth values for a tile
  107. InterlockedMin(sTileMinZ, sampleMinZ);
  108. InterlockedMax(sTileMaxZ, sampleMaxZ);
  109. GroupMemoryBarrierWithGroupSync();
  110. float minTileZ = asfloat(sTileMinZ);
  111. float maxTileZ = asfloat(sTileMaxZ);
  112. // Create a frustum for the current tile
  113. // First determine a scale of the tile compared to the viewport
  114. float2 tileScale = gViewportRectangle.zw * rcp(float2(TILE_SIZE, TILE_SIZE));
  115. // Now we need to use that scale to scale down the frustum.
  116. // Assume a projection matrix:
  117. // A, 0, C, 0
  118. // 0, B, D, 0
  119. // 0, 0, Q, QN
  120. // 0, 0, -1, 0
  121. //
  122. // Where A is = 2*n / (r - l)
  123. // and C = (r + l) / (r - l)
  124. //
  125. // Q & QN are used for Z value which we don't need to scale. B & D are equivalent for the
  126. // Y value, we'll only consider the X values (A & C) from now on.
  127. //
  128. // Both and A and C are inversely proportional to the size of the frustum (r - l). Larger scale mean that
  129. // tiles are that much smaller than the viewport. This means as our scale increases, (r - l) decreases,
  130. // which means A & C as a whole increase. Therefore:
  131. // A' = A * tileScale.x
  132. // C' = C * tileScale.x
  133. // Aside from scaling, we also need to offset the frustum to the center of the tile.
  134. // For this we calculate the bias value which we add to the C & D factors (which control
  135. // the offset in the projection matrix).
  136. float2 tileBias = tileScale - 1 - groupId.xy * 2;
  137. // This will yield a bias ranging from [-(tileScale - 1), tileScale - 1]. Every second bias is skipped as
  138. // corresponds to a point in-between two tiles, overlapping existing frustums.
  139. float flipSign = 1.0f;
  140. // Adjust for OpenGL's upside down texture system
  141. #if OPENGL
  142. flipSign = -1;
  143. #endif
  144. float At = gMatProj[0][0] * tileScale.x;
  145. float Ctt = gMatProj[0][2] * tileScale.x - tileBias.x;
  146. float Bt = gMatProj[1][1] * tileScale.y * flipSign;
  147. float Dtt = (gMatProj[1][2] * tileScale.y + flipSign * tileBias.y) * flipSign;
  148. // Extract left/right/top/bottom frustum planes from scaled projection matrix
  149. // Note: Do this on the CPU? Since they're shared among all entries in a tile. Plus they don't change across frames.
  150. float4 frustumPlanes[6];
  151. frustumPlanes[0] = float4(At, 0.0f, gMatProj[3][2] + Ctt, 0.0f);
  152. frustumPlanes[1] = float4(-At, 0.0f, gMatProj[3][2] - Ctt, 0.0f);
  153. frustumPlanes[2] = float4(0.0f, -Bt, gMatProj[3][2] - Dtt, 0.0f);
  154. frustumPlanes[3] = float4(0.0f, Bt, gMatProj[3][2] + Dtt, 0.0f);
  155. // Normalize
  156. [unroll]
  157. for (uint i = 0; i < 4; ++i)
  158. frustumPlanes[i] *= rcp(length(frustumPlanes[i].xyz));
  159. // Generate near/far frustum planes
  160. // Note: d gets negated in plane equation, this is why its in opposite direction than it intuitively should be
  161. frustumPlanes[4] = float4(0.0f, 0.0f, -1.0f, -minTileZ);
  162. frustumPlanes[5] = float4(0.0f, 0.0f, 1.0f, maxTileZ);
  163. // Find radial & spot lights overlapping the tile
  164. for(uint type = 0; type < 2; type++)
  165. {
  166. uint lightsStart = threadIndex + gLightStrides[type];
  167. uint lightsEnd = lightsStart + gLightCounts[type + 1];
  168. for (uint i = lightsStart; i < lightsEnd && i < MAX_LIGHTS; i += TILE_SIZE)
  169. {
  170. float4 lightPosition = mul(gMatView, float4(gLights[i].position, 1.0f));
  171. float lightRadius = gLights[i].attRadius;
  172. // Note: The cull method can have false positives. In case of large light bounds and small tiles, it
  173. // can end up being quite a lot. Consider adding an extra heuristic to check a separating plane.
  174. bool lightInTile = true;
  175. // First check side planes as this will cull majority of the lights
  176. [unroll]
  177. for (uint j = 0; j < 4; ++j)
  178. {
  179. float dist = dot(frustumPlanes[j], lightPosition);
  180. lightInTile = lightInTile && (dist >= -lightRadius);
  181. }
  182. // Make sure to do an actual branch, since it's quite likely an entire warp will have the same value
  183. [branch]
  184. if (lightInTile)
  185. {
  186. bool inDepthRange = true;
  187. // Check near/far planes
  188. [unroll]
  189. for (uint j = 4; j < 6; ++j)
  190. {
  191. float dist = dot(frustumPlanes[j], lightPosition);
  192. inDepthRange = inDepthRange && (dist >= -lightRadius);
  193. }
  194. // In tile, add to branch
  195. [branch]
  196. if (inDepthRange)
  197. {
  198. InterlockedAdd(sNumLightsPerType[type], 1U);
  199. uint idx;
  200. InterlockedAdd(sTotalNumLights, 1U, idx);
  201. gLightIndices[idx] = i;
  202. }
  203. }
  204. }
  205. }
  206. GroupMemoryBarrierWithGroupSync();
  207. // Generate world position
  208. float2 screenUv = ((float2)(gViewportRectangle.xy + pixelPos) + 0.5f) / (float2)gViewportRectangle.zw;
  209. float2 clipSpacePos = (screenUv - gClipToUVScaleOffset.zw) / gClipToUVScaleOffset.xy;
  210. uint2 viewportMax = gViewportRectangle.xy + gViewportRectangle.zw;
  211. // Ignore pixels out of valid range
  212. if (all(dispatchThreadId.xy < viewportMax))
  213. {
  214. #if MSAA_COUNT > 1
  215. float coverage = gMSAACoverage.Load(int3(pixelPos, 0)).r;
  216. float4 lighting = getLighting(clipSpacePos.xy, surfaceData[0]);
  217. writeBufferSample(pixelPos, 0, lighting);
  218. bool doPerSampleShading = coverage > 0.5f;
  219. if(doPerSampleShading)
  220. {
  221. [unroll]
  222. for(uint i = 1; i < MSAA_COUNT; ++i)
  223. {
  224. lighting = getLighting(clipSpacePos.xy, surfaceData[i]);
  225. writeBufferSample(pixelPos, i, lighting);
  226. }
  227. }
  228. else // Splat same information to all samples
  229. {
  230. // Note: The splatting step can be skipped if we account for coverage when resolving. However
  231. // the coverage texture potentially becomes invalid after transparent geometry is renedered,
  232. // so we need to resolve all samples. Consider getting around this issue somehow.
  233. [unroll]
  234. for(uint i = 1; i < MSAA_COUNT; ++i)
  235. writeBufferSample(pixelPos, i, lighting);
  236. }
  237. #else
  238. float4 lighting = getLighting(clipSpacePos.xy, surfaceData[0]);
  239. gOutput[pixelPos] = lighting;
  240. #endif
  241. }
  242. }
  243. };
  244. };