BsLexerFX.l 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303
  1. %{
  2. #include "BsParserFX.h"
  3. #define YY_USER_ACTION yylloc->first_column = yycolumn + 1; yylloc->first_line = yylineno + 1; yycolumn += (int)yyleng; yylloc->filename = getCurrentFilename(yyextra);
  4. #define YY_USER_INIT yylineno = 0; yycolumn = 0;
  5. %}
  6. %option yylineno reentrant noyywrap nounistd never-interactive warn nodefault bison-bridge bison-locations
  7. %option outfile="BsLexerFX.c" header-file="BsLexerFX.h"
  8. %option extra-type="struct tagParseState *"
  9. INTEGER -?[0-9][0-9]*
  10. INTEGER_16 0[xX][0-9a-fA-F]+
  11. FLOAT [0-9]+\.[0-9]+([eE][+-]?[0-9]+)?[fF]?
  12. STRING \"[^"\n]*\"
  13. IDENTIFIER [_a-zA-Z][_a-zA-Z0-9]*
  14. WS [ \r\n\t]*
  15. SPACE [ \t]
  16. SINGLEWS [ \r\n\t]
  17. ENDLINE [\r\n]
  18. COMMENT \/\/[^\n]*
  19. DEFINE_EXPR [^\r\n]*
  20. /* Start conditions */
  21. %x INCLUDE
  22. %x CODEBLOCK_HEADER
  23. %x CODEBLOCK
  24. %x CODEBLOCK_END
  25. %x DEFINE_COND
  26. %x DEFINE_COND_EXPR
  27. %x UNDEF_COND
  28. %x CONDITIONAL_IF
  29. %x CONDITIONAL_IFN
  30. %x CONDITIONAL_ELIF
  31. %x CONDITIONAL_IGNORE
  32. %%
  33. {WS} { /* Skip blank */ }
  34. {INTEGER} { yylval->intValue = atoi(yytext); return TOKEN_INTEGER; }
  35. {INTEGER_16} { yylval->intValue = (int)strtol(yytext, 0, 0); return TOKEN_INTEGER; }
  36. {FLOAT} { yylval->floatValue = (float)atof(yytext); return TOKEN_FLOAT; }
  37. {STRING} { yylval->strValue = mmalloc_strdup(yyextra->memContext, yytext); return TOKEN_STRING; }
  38. true { yylval->intValue = 1; return TOKEN_BOOLEAN; }
  39. false { yylval->intValue = 0; return TOKEN_BOOLEAN; }
  40. /* Shader keywords */
  41. options { return TOKEN_OPTIONS; }
  42. technique { return TOKEN_TECHNIQUE; }
  43. mixin { return TOKEN_MIXIN; }
  44. /* Options keywords */
  45. separable { return TOKEN_SEPARABLE; }
  46. sort { return TOKEN_SORT; }
  47. priority { return TOKEN_PRIORITY; }
  48. transparent { return TOKEN_TRANSPARENT; }
  49. /* Technique keywords */
  50. renderer { return TOKEN_RENDERER; }
  51. tags { return TOKEN_TAGS; }
  52. pass { return TOKEN_PASS; }
  53. /* Pass keywords */
  54. blend { return TOKEN_BLEND; }
  55. raster { return TOKEN_RASTER; }
  56. depth { return TOKEN_DEPTH; }
  57. stencil { return TOKEN_STENCIL; }
  58. /* Rasterizer state keywords */
  59. fill { return TOKEN_FILLMODE; }
  60. cull { return TOKEN_CULLMODE; }
  61. scissor { return TOKEN_SCISSOR; }
  62. multisample { return TOKEN_MULTISAMPLE; }
  63. lineaa { return TOKEN_AALINE; }
  64. /* Depth state keywords */
  65. read { return TOKEN_DEPTHREAD; }
  66. write { return TOKEN_DEPTHWRITE; }
  67. compare { return TOKEN_COMPAREFUNC; }
  68. bias { return TOKEN_DEPTHBIAS; }
  69. scaledbias { return TOKEN_SDEPTHBIAS; }
  70. clip { return TOKEN_DEPTHCLIP; }
  71. /* Stencil state keywords */
  72. reference { return TOKEN_STENCILREF; }
  73. enabled { return TOKEN_ENABLED; }
  74. readmask { return TOKEN_READMASK; }
  75. writemask { return TOKEN_WRITEMASK; }
  76. front { return TOKEN_STENCILOPFRONT; }
  77. back { return TOKEN_STENCILOPBACK; }
  78. fail { return TOKEN_FAIL; }
  79. zfail { return TOKEN_ZFAIL; }
  80. /* Blend state keywords */
  81. dither { return TOKEN_ALPHATOCOVERAGE; }
  82. independant { return TOKEN_INDEPENDANTBLEND; }
  83. target { return TOKEN_TARGET; }
  84. index { return TOKEN_INDEX; }
  85. color { return TOKEN_COLOR; }
  86. alpha { return TOKEN_ALPHA; }
  87. source { return TOKEN_SOURCE; }
  88. dest { return TOKEN_DEST; }
  89. op { return TOKEN_OP; }
  90. /* State values */
  91. wire { yylval->intValue = FMV_Wire; return TOKEN_FILLMODEVALUE; }
  92. solid { yylval->intValue = FMV_Solid; return TOKEN_FILLMODEVALUE; }
  93. none { yylval->intValue = CASV_None; return TOKEN_CULLANDQUEUEVALUE; }
  94. cw { yylval->intValue = CASV_CW; return TOKEN_CULLANDQUEUEVALUE; }
  95. ccw { yylval->intValue = CASV_CCW; return TOKEN_CULLANDQUEUEVALUE; }
  96. fronttoback { yylval->intValue = CASV_FrontToBack; return TOKEN_CULLANDQUEUEVALUE; }
  97. backtofront { yylval->intValue = CASV_BackToFront; return TOKEN_CULLANDQUEUEVALUE; }
  98. never { yylval->intValue = CFV_Fail; return TOKEN_COMPFUNCVALUE; }
  99. always { yylval->intValue = CFV_Pass; return TOKEN_COMPFUNCVALUE; }
  100. lt { yylval->intValue = CFV_LT; return TOKEN_COMPFUNCVALUE; }
  101. lte { yylval->intValue = CFV_LTE; return TOKEN_COMPFUNCVALUE; }
  102. eq { yylval->intValue = CFV_EQ; return TOKEN_COMPFUNCVALUE; }
  103. neq { yylval->intValue = CFV_NEQ; return TOKEN_COMPFUNCVALUE; }
  104. gte { yylval->intValue = CFV_GTE; return TOKEN_COMPFUNCVALUE; }
  105. gt { yylval->intValue = CFV_GT; return TOKEN_COMPFUNCVALUE; }
  106. keep { yylval->intValue = OV_Keep; return TOKEN_OPVALUE; }
  107. zero { yylval->intValue = OV_Zero; return TOKEN_OPVALUE; }
  108. replace { yylval->intValue = OV_Replace; return TOKEN_OPVALUE; }
  109. inc { yylval->intValue = OV_Incr; return TOKEN_OPVALUE; }
  110. dec { yylval->intValue = OV_Decr; return TOKEN_OPVALUE; }
  111. incwrap { yylval->intValue = OV_IncrWrap; return TOKEN_OPVALUE; }
  112. decwrap { yylval->intValue = OV_DecrWrap; return TOKEN_OPVALUE; }
  113. inverse { yylval->intValue = OV_Invert; return TOKEN_OPVALUE; }
  114. one { yylval->intValue = OV_One; return TOKEN_OPVALUE; }
  115. dstRGB { yylval->intValue = OV_DestColor; return TOKEN_OPVALUE; }
  116. srcRGB { yylval->intValue = OV_SrcColor; return TOKEN_OPVALUE; }
  117. dstIRGB { yylval->intValue = OV_InvDestColor; return TOKEN_OPVALUE; }
  118. srcIRGB { yylval->intValue = OV_InvSrcColor; return TOKEN_OPVALUE; }
  119. dstA { yylval->intValue = OV_DestAlpha; return TOKEN_OPVALUE; }
  120. srcA { yylval->intValue = OV_SrcAlpha; return TOKEN_OPVALUE; }
  121. dstIA { yylval->intValue = OV_InvDestAlpha; return TOKEN_OPVALUE; }
  122. srcIA { yylval->intValue = OV_InvSrcAlpha; return TOKEN_OPVALUE; }
  123. add { yylval->intValue = BOV_Add; return TOKEN_BLENDOPVALUE; }
  124. sub { yylval->intValue = BOV_Subtract; return TOKEN_BLENDOPVALUE; }
  125. rsub { yylval->intValue = BOV_RevSubtract; return TOKEN_BLENDOPVALUE; }
  126. min { yylval->intValue = BOV_Min; return TOKEN_BLENDOPVALUE; }
  127. max { yylval->intValue = BOV_Max; return TOKEN_BLENDOPVALUE; }
  128. empty { yylval->intValue = 0x0; return TOKEN_COLORMASK; }
  129. R { yylval->intValue = 0x1; return TOKEN_COLORMASK; }
  130. G { yylval->intValue = 0x2; return TOKEN_COLORMASK; }
  131. B { yylval->intValue = 0x4; return TOKEN_COLORMASK; }
  132. A { yylval->intValue = 0x8; return TOKEN_COLORMASK; }
  133. RG { yylval->intValue = 0x3; return TOKEN_COLORMASK; }
  134. RB { yylval->intValue = 0x5; return TOKEN_COLORMASK; }
  135. RA { yylval->intValue = 0x9; return TOKEN_COLORMASK; }
  136. GB { yylval->intValue = 0x6; return TOKEN_COLORMASK; }
  137. GA { yylval->intValue = 0xA; return TOKEN_COLORMASK; }
  138. BA { yylval->intValue = 0xC; return TOKEN_COLORMASK; }
  139. RGB { yylval->intValue = 0x7; return TOKEN_COLORMASK; }
  140. RGA { yylval->intValue = 0xB; return TOKEN_COLORMASK; }
  141. RBA { yylval->intValue = 0xD; return TOKEN_COLORMASK; }
  142. GBA { yylval->intValue = 0xE; return TOKEN_COLORMASK; }
  143. RGBA { yylval->intValue = 0xF; return TOKEN_COLORMASK; }
  144. /* Preprocessor */
  145. #include { BEGIN(INCLUDE); }
  146. <INCLUDE>{WS} { /* Skip blank */ }
  147. <INCLUDE>{STRING} {
  148. int size = 0;
  149. char* includeBuffer = includePush(yyextra, yytext, yylineno, yycolumn, &size);
  150. if(!includeBuffer)
  151. yyterminate();
  152. YY_BUFFER_STATE currentBuffer = YY_CURRENT_BUFFER;
  153. YY_BUFFER_STATE newBuffer = yy_scan_buffer(includeBuffer, size, yyscanner);
  154. yy_switch_to_buffer(currentBuffer, yyscanner);
  155. yypush_buffer_state(newBuffer, yyscanner);
  156. yylineno = 0;
  157. yycolumn = 0;
  158. BEGIN(INITIAL);
  159. }
  160. <INCLUDE>. { return yytext[0]; }
  161. <<EOF>> {
  162. if(!yyextra->includeStack)
  163. yyterminate();
  164. yypop_buffer_state(yyscanner);
  165. includePop(yyextra);
  166. }
  167. #define { BEGIN(DEFINE_COND); }
  168. <DEFINE_COND>{SPACE} { /* Skip blank */ }
  169. <DEFINE_COND>{IDENTIFIER} { addDefine(yyextra, yytext); BEGIN(DEFINE_COND_EXPR); }
  170. <DEFINE_COND>{ENDLINE} { BEGIN(INITIAL); }
  171. <DEFINE_COND>. { return yytext[0]; }
  172. <DEFINE_COND_EXPR>{DEFINE_EXPR} { addDefineExpr(yyextra, yytext); BEGIN(INITIAL); }
  173. <DEFINE_COND_EXPR>{ENDLINE} { BEGIN(INITIAL); }
  174. #undef { BEGIN(UNDEF_COND); }
  175. <UNDEF_COND>{WS} { /* Skip blank */ }
  176. <UNDEF_COND>{IDENTIFIER} { removeDefine(yyextra, yytext); BEGIN(INITIAL); }
  177. <UNDEF_COND>. { return yytext[0]; }
  178. #ifdef { BEGIN(CONDITIONAL_IF); }
  179. <CONDITIONAL_IF>{WS} { /* Skip blank */ }
  180. <CONDITIONAL_IF>{IDENTIFIER} {
  181. int isEnabled = pushConditional(yyextra, hasDefine(yyextra, yytext));
  182. if(!isEnabled)
  183. BEGIN(CONDITIONAL_IGNORE);
  184. else
  185. BEGIN(INITIAL);
  186. }
  187. <CONDITIONAL_IF>. { return yytext[0]; }
  188. #ifndef { BEGIN(CONDITIONAL_IFN); }
  189. <CONDITIONAL_IFN>{WS} { /* Skip blank */ }
  190. <CONDITIONAL_IFN>{IDENTIFIER} {
  191. int isEnabled = pushConditional(yyextra, !hasDefine(yyextra, yytext));
  192. if(!isEnabled)
  193. BEGIN(CONDITIONAL_IGNORE);
  194. else
  195. BEGIN(INITIAL);
  196. }
  197. <CONDITIONAL_IFN>. { return yytext[0]; }
  198. #else {
  199. if(!switchConditional(yyextra))
  200. BEGIN(CONDITIONAL_IGNORE);
  201. }
  202. #elif { BEGIN(CONDITIONAL_IGNORE); }
  203. #endif { popConditional(yyextra); }
  204. <CONDITIONAL_IGNORE>{WS} { /* Skip */ }
  205. <CONDITIONAL_IGNORE>#ifdef { pushConditional(yyextra, 0); }
  206. <CONDITIONAL_IGNORE>#ifndef { pushConditional(yyextra, 0); }
  207. <CONDITIONAL_IGNORE>#else {
  208. if(switchConditional(yyextra))
  209. BEGIN(INITIAL);
  210. }
  211. <CONDITIONAL_IGNORE>#elif { BEGIN(CONDITIONAL_ELIF); }
  212. <CONDITIONAL_IGNORE>#endif {
  213. if(popConditional(yyextra))
  214. BEGIN(INITIAL);
  215. }
  216. <CONDITIONAL_IGNORE>. { /* Skip */ }
  217. <CONDITIONAL_ELIF>{WS} { /* Skip blank */ }
  218. <CONDITIONAL_ELIF>{IDENTIFIER} {
  219. int isEnabled = setConditional(yyextra, hasDefine(yyextra, yytext));
  220. if(!isEnabled)
  221. BEGIN(CONDITIONAL_IGNORE);
  222. else
  223. BEGIN(INITIAL);
  224. }
  225. <CONDITIONAL_ELIF>. { return yytext[0]; }
  226. /* Code block */
  227. code { BEGIN(CODEBLOCK_HEADER); return TOKEN_CODE; }
  228. /* Track when the code block begins, insert all code block characters into our own buffer, record a sequential index */
  229. /* of all code blocks in the text, and track bracket open/closed state so we know when we're done with the code block. */
  230. /* And finally output a sequential code block index to the parser (it shouldn't be aware of anything else in the block). */
  231. <CODEBLOCK_HEADER>\{ { BEGIN(CODEBLOCK); beginCodeBlock(yyextra); yyextra->numOpenBrackets = 1; return yytext[0]; }
  232. <CODEBLOCK_HEADER>{WS} { /* Skip blank */ }
  233. <CODEBLOCK_HEADER>. { return yytext[0]; }
  234. <CODEBLOCK>\{ { yyextra->numOpenBrackets++; appendCodeBlock(yyextra, yytext, 1); }
  235. <CODEBLOCK>\} {
  236. yyextra->numOpenBrackets--;
  237. if(yyextra->numOpenBrackets == 0)
  238. {
  239. BEGIN(CODEBLOCK_END);
  240. unput('0');
  241. }
  242. else
  243. appendCodeBlock(yyextra, yytext, 1);
  244. }
  245. <CODEBLOCK>.|{SINGLEWS} { appendCodeBlock(yyextra, yytext, 1); }
  246. /* Logic for manually inserting "Index = codeBlockIndex;". We insert arbitrary numbers which allows us to sequentially */
  247. /* output all the tokens we need. We use only single-character values so we don't override anything in the text buffer */
  248. /* (since the starting value was also a single character "{"). */
  249. <CODEBLOCK_END>0 { unput('1'); return TOKEN_INDEX; }
  250. <CODEBLOCK_END>1 { unput('2'); return '='; }
  251. <CODEBLOCK_END>2 { yylval->intValue = getCodeBlockIndex(yyextra); unput('3'); return TOKEN_INTEGER; }
  252. <CODEBLOCK_END>3 { unput('4'); return ';'; }
  253. <CODEBLOCK_END>4 { BEGIN(INITIAL); return '}'; }
  254. <CODEBLOCK_END>.|{WS} { /* Never reached */ }
  255. /* Catch all rules */
  256. {COMMENT} { }
  257. {IDENTIFIER} { yylval->strValue = mmalloc_strdup(yyextra->memContext, yytext); return TOKEN_IDENTIFIER; }
  258. . { return yytext[0]; }
  259. %%