BsLexerFX.l 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309
  1. %{
  2. #include "BsParserFX.h"
  3. #define YY_USER_ACTION yylloc->first_column = yycolumn + 1; yylloc->first_line = yylineno + 1; yycolumn += (int)yyleng; yylloc->filename = getCurrentFilename(yyextra);
  4. #define YY_USER_INIT yylineno = 0; yycolumn = 0;
  5. %}
  6. %option yylineno reentrant noyywrap nounistd never-interactive warn nodefault bison-bridge bison-locations
  7. %option outfile="BsLexerFX.c" header-file="BsLexerFX.h"
  8. %option extra-type="struct tagParseState *"
  9. INTEGER -?[0-9][0-9]*
  10. INTEGER_16 0[xX][0-9a-fA-F]+
  11. FLOAT [0-9]+\.[0-9]+([eE][+-]?[0-9]+)?[fF]?
  12. STRING \"[^"\n]*\"
  13. IDENTIFIER [_a-zA-Z][_a-zA-Z0-9]*
  14. WS [ \r\n\t]*
  15. SPACE [ \t]
  16. SINGLEWS [ \r\n\t]
  17. ENDLINE [\r\n]
  18. COMMENT \/\/[^\n]*
  19. DEFINE_EXPR [^\r\n]*
  20. /* Start conditions */
  21. %x INCLUDE
  22. %x CODEBLOCK_HEADER
  23. %x CODEBLOCK_EQUALS
  24. %x CODEBLOCK
  25. %x CODEBLOCK_END
  26. %x DEFINE_COND
  27. %x DEFINE_COND_EXPR
  28. %x UNDEF_COND
  29. %x CONDITIONAL_IF
  30. %x CONDITIONAL_IFN
  31. %x CONDITIONAL_ELIF
  32. %x CONDITIONAL_IGNORE
  33. %%
  34. {WS} { /* Skip blank */ }
  35. {INTEGER} { yylval->intValue = atoi(yytext); return TOKEN_INTEGER; }
  36. {INTEGER_16} { yylval->intValue = (int)strtol(yytext, 0, 0); return TOKEN_INTEGER; }
  37. {FLOAT} { yylval->floatValue = (float)atof(yytext); return TOKEN_FLOAT; }
  38. {STRING} { yylval->strValue = mmalloc_strdup(yyextra->memContext, yytext); return TOKEN_STRING; }
  39. true { yylval->intValue = 1; return TOKEN_BOOLEAN; }
  40. false { yylval->intValue = 0; return TOKEN_BOOLEAN; }
  41. /* Shader keywords */
  42. Separable { return TOKEN_SEPARABLE; }
  43. Sort { return TOKEN_SORT; }
  44. Priority { return TOKEN_PRIORITY; }
  45. Transparent { return TOKEN_TRANSPARENT; }
  46. Technique { return TOKEN_TECHNIQUE; }
  47. /* Technique keywords */
  48. Renderer { return TOKEN_RENDERER; }
  49. Tags { return TOKEN_TAGS; }
  50. Pass { return TOKEN_PASS; }
  51. /* Pass keywords */
  52. StencilRef { return TOKEN_STENCILREF; }
  53. /* Rasterizer state keywords */
  54. Fill { return TOKEN_FILLMODE; }
  55. Cull { return TOKEN_CULLMODE; }
  56. DepthBias { return TOKEN_DEPTHBIAS; }
  57. ScaledDepthBias { return TOKEN_SDEPTHBIAS; }
  58. DepthClip { return TOKEN_DEPTHCLIP; }
  59. Scissor { return TOKEN_SCISSOR; }
  60. Multisample { return TOKEN_MULTISAMPLE; }
  61. AALine { return TOKEN_AALINE; }
  62. /* Depth-stencil state keywords */
  63. DepthRead { return TOKEN_DEPTHREAD; }
  64. DepthWrite { return TOKEN_DEPTHWRITE; }
  65. CompareFunc { return TOKEN_COMPAREFUNC; }
  66. Stencil { return TOKEN_STENCIL; }
  67. StencilReadMask { return TOKEN_STENCILREADMASK; }
  68. StencilWriteMask { return TOKEN_STENCILWRITEMASK; }
  69. StencilOpFront { return TOKEN_STENCILOPFRONT; }
  70. StencilOpBack { return TOKEN_STENCILOPBACK; }
  71. Fail { return TOKEN_FAIL; }
  72. ZFail { return TOKEN_ZFAIL; }
  73. /* Blend state keywords */
  74. AlphaToCoverage { return TOKEN_ALPHATOCOVERAGE; }
  75. IndependantBlend { return TOKEN_INDEPENDANTBLEND; }
  76. Target { return TOKEN_TARGET; }
  77. Index { return TOKEN_INDEX; }
  78. Blend { return TOKEN_BLEND; }
  79. Color { return TOKEN_COLOR; }
  80. Alpha { return TOKEN_ALPHA; }
  81. WriteMask { return TOKEN_WRITEMASK; }
  82. Source { return TOKEN_SOURCE; }
  83. Dest { return TOKEN_DEST; }
  84. Op { return TOKEN_OP; }
  85. /* Qualifiers */
  86. base { return TOKEN_BASE; }
  87. inherits { return TOKEN_INHERITS; }
  88. /* State values */
  89. WIRE { yylval->intValue = FMV_Wire; return TOKEN_FILLMODEVALUE; }
  90. SOLID { yylval->intValue = FMV_Solid; return TOKEN_FILLMODEVALUE; }
  91. NOCULL { yylval->intValue = CMV_None; return TOKEN_CULLMODEVALUE; }
  92. CW { yylval->intValue = CMV_CW; return TOKEN_CULLMODEVALUE; }
  93. CCW { yylval->intValue = CMV_CCW; return TOKEN_CULLMODEVALUE; }
  94. FAIL { yylval->intValue = CFV_Fail; return TOKEN_COMPFUNCVALUE; }
  95. PASS { yylval->intValue = CFV_Pass; return TOKEN_COMPFUNCVALUE; }
  96. LT { yylval->intValue = CFV_LT; return TOKEN_COMPFUNCVALUE; }
  97. LTE { yylval->intValue = CFV_LTE; return TOKEN_COMPFUNCVALUE; }
  98. EQ { yylval->intValue = CFV_EQ; return TOKEN_COMPFUNCVALUE; }
  99. NEQ { yylval->intValue = CFV_NEQ; return TOKEN_COMPFUNCVALUE; }
  100. GTE { yylval->intValue = CFV_GTE; return TOKEN_COMPFUNCVALUE; }
  101. GT { yylval->intValue = CFV_GT; return TOKEN_COMPFUNCVALUE; }
  102. KEEP { yylval->intValue = OV_Keep; return TOKEN_OPVALUE; }
  103. ZERO { yylval->intValue = OV_Zero; return TOKEN_OPVALUE; }
  104. REPLACE { yylval->intValue = OV_Replace; return TOKEN_OPVALUE; }
  105. INC { yylval->intValue = OV_Incr; return TOKEN_OPVALUE; }
  106. DEC { yylval->intValue = OV_Decr; return TOKEN_OPVALUE; }
  107. INCWRAP { yylval->intValue = OV_IncrWrap; return TOKEN_OPVALUE; }
  108. DECWRAP { yylval->intValue = OV_DecrWrap; return TOKEN_OPVALUE; }
  109. INV { yylval->intValue = OV_Invert; return TOKEN_OPVALUE; }
  110. ONE { yylval->intValue = OV_One; return TOKEN_OPVALUE; }
  111. DSTRGB { yylval->intValue = OV_DestColor; return TOKEN_OPVALUE; }
  112. SRCRGB { yylval->intValue = OV_SrcColor; return TOKEN_OPVALUE; }
  113. DSTIRGB { yylval->intValue = OV_InvDestColor; return TOKEN_OPVALUE; }
  114. SRCIRGB { yylval->intValue = OV_InvSrcColor; return TOKEN_OPVALUE; }
  115. DSTA { yylval->intValue = OV_DestAlpha; return TOKEN_OPVALUE; }
  116. SRCA { yylval->intValue = OV_SrcAlpha; return TOKEN_OPVALUE; }
  117. DSTIA { yylval->intValue = OV_InvDestAlpha; return TOKEN_OPVALUE; }
  118. SRCIA { yylval->intValue = OV_InvSrcAlpha; return TOKEN_OPVALUE; }
  119. ADD { yylval->intValue = BOV_Add; return TOKEN_BLENDOPVALUE; }
  120. SUB { yylval->intValue = BOV_Subtract; return TOKEN_BLENDOPVALUE; }
  121. RSUB { yylval->intValue = BOV_RevSubtract; return TOKEN_BLENDOPVALUE; }
  122. MIN { yylval->intValue = BOV_Min; return TOKEN_BLENDOPVALUE; }
  123. MAX { yylval->intValue = BOV_Max; return TOKEN_BLENDOPVALUE; }
  124. NOCOLOR { yylval->intValue = 0x0; return TOKEN_COLORMASK; }
  125. R { yylval->intValue = 0x1; return TOKEN_COLORMASK; }
  126. G { yylval->intValue = 0x2; return TOKEN_COLORMASK; }
  127. B { yylval->intValue = 0x4; return TOKEN_COLORMASK; }
  128. A { yylval->intValue = 0x8; return TOKEN_COLORMASK; }
  129. RG { yylval->intValue = 0x3; return TOKEN_COLORMASK; }
  130. RB { yylval->intValue = 0x5; return TOKEN_COLORMASK; }
  131. RA { yylval->intValue = 0x9; return TOKEN_COLORMASK; }
  132. GB { yylval->intValue = 0x6; return TOKEN_COLORMASK; }
  133. GA { yylval->intValue = 0xA; return TOKEN_COLORMASK; }
  134. BA { yylval->intValue = 0xC; return TOKEN_COLORMASK; }
  135. RGB { yylval->intValue = 0x7; return TOKEN_COLORMASK; }
  136. RGA { yylval->intValue = 0xB; return TOKEN_COLORMASK; }
  137. RBA { yylval->intValue = 0xD; return TOKEN_COLORMASK; }
  138. GBA { yylval->intValue = 0xE; return TOKEN_COLORMASK; }
  139. RGBA { yylval->intValue = 0xF; return TOKEN_COLORMASK; }
  140. FRONTTOBACK { yylval->intValue = QST_FrontToBack; return TOKEN_QUEUETYPE; }
  141. BACKTOFRONT { yylval->intValue = QST_BackToFront; return TOKEN_QUEUETYPE; }
  142. NOSORT { yylval->intValue = QST_None; return TOKEN_QUEUETYPE; }
  143. /* Preprocessor */
  144. #include { BEGIN(INCLUDE); }
  145. <INCLUDE>{WS} { /* Skip blank */ }
  146. <INCLUDE>{STRING} {
  147. int size = 0;
  148. char* includeBuffer = includePush(yyextra, yytext, yylineno, yycolumn, &size);
  149. if(!includeBuffer)
  150. yyterminate();
  151. YY_BUFFER_STATE currentBuffer = YY_CURRENT_BUFFER;
  152. YY_BUFFER_STATE newBuffer = yy_scan_buffer(includeBuffer, size, yyscanner);
  153. yy_switch_to_buffer(currentBuffer, yyscanner);
  154. yypush_buffer_state(newBuffer, yyscanner);
  155. yylineno = 0;
  156. yycolumn = 0;
  157. BEGIN(INITIAL);
  158. }
  159. <INCLUDE>. { return yytext[0]; }
  160. <<EOF>> {
  161. if(!yyextra->includeStack)
  162. yyterminate();
  163. yypop_buffer_state(yyscanner);
  164. includePop(yyextra);
  165. }
  166. #define { BEGIN(DEFINE_COND); }
  167. <DEFINE_COND>{SPACE} { /* Skip blank */ }
  168. <DEFINE_COND>{IDENTIFIER} { addDefine(yyextra, yytext); BEGIN(DEFINE_COND_EXPR); }
  169. <DEFINE_COND>{ENDLINE} { BEGIN(INITIAL); }
  170. <DEFINE_COND>. { return yytext[0]; }
  171. <DEFINE_COND_EXPR>{DEFINE_EXPR} { addDefineExpr(yyextra, yytext); BEGIN(INITIAL); }
  172. <DEFINE_COND_EXPR>{ENDLINE} { BEGIN(INITIAL); }
  173. #undef { BEGIN(UNDEF_COND); }
  174. <UNDEF_COND>{WS} { /* Skip blank */ }
  175. <UNDEF_COND>{IDENTIFIER} { removeDefine(yyextra, yytext); BEGIN(INITIAL); }
  176. <UNDEF_COND>. { return yytext[0]; }
  177. #ifdef { BEGIN(CONDITIONAL_IF); }
  178. <CONDITIONAL_IF>{WS} { /* Skip blank */ }
  179. <CONDITIONAL_IF>{IDENTIFIER} {
  180. int isEnabled = pushConditional(yyextra, hasDefine(yyextra, yytext));
  181. if(!isEnabled)
  182. BEGIN(CONDITIONAL_IGNORE);
  183. else
  184. BEGIN(INITIAL);
  185. }
  186. <CONDITIONAL_IF>. { return yytext[0]; }
  187. #ifndef { BEGIN(CONDITIONAL_IFN); }
  188. <CONDITIONAL_IFN>{WS} { /* Skip blank */ }
  189. <CONDITIONAL_IFN>{IDENTIFIER} {
  190. int isEnabled = pushConditional(yyextra, !hasDefine(yyextra, yytext));
  191. if(!isEnabled)
  192. BEGIN(CONDITIONAL_IGNORE);
  193. else
  194. BEGIN(INITIAL);
  195. }
  196. <CONDITIONAL_IFN>. { return yytext[0]; }
  197. #else { BEGIN(CONDITIONAL_IGNORE); }
  198. #elif { BEGIN(CONDITIONAL_IGNORE); }
  199. #endif { popConditional(yyextra); }
  200. <CONDITIONAL_IGNORE>{WS} { /* Skip */ }
  201. <CONDITIONAL_IGNORE>#ifdef { pushConditional(yyextra, 0); }
  202. <CONDITIONAL_IGNORE>#ifndef { pushConditional(yyextra, 0); }
  203. <CONDITIONAL_IGNORE>#else {
  204. if(switchConditional(yyextra))
  205. BEGIN(INITIAL);
  206. }
  207. <CONDITIONAL_IGNORE>#elif { BEGIN(CONDITIONAL_ELIF); }
  208. <CONDITIONAL_IGNORE>#endif {
  209. if(popConditional(yyextra))
  210. BEGIN(INITIAL);
  211. }
  212. <CONDITIONAL_IGNORE>. { /* Skip */ }
  213. <CONDITIONAL_ELIF>{WS} { /* Skip blank */ }
  214. <CONDITIONAL_ELIF>{IDENTIFIER} {
  215. int isEnabled = setConditional(yyextra, hasDefine(yyextra, yytext));
  216. if(!isEnabled)
  217. BEGIN(CONDITIONAL_IGNORE);
  218. else
  219. BEGIN(INITIAL);
  220. }
  221. <CONDITIONAL_ELIF>. { return yytext[0]; }
  222. /* Code blocks */
  223. Vertex { BEGIN(CODEBLOCK_HEADER); return TOKEN_VERTEX; }
  224. Fragment { BEGIN(CODEBLOCK_HEADER); return TOKEN_FRAGMENT; }
  225. Geometry { BEGIN(CODEBLOCK_HEADER); return TOKEN_GEOMETRY; }
  226. Hull { BEGIN(CODEBLOCK_HEADER); return TOKEN_HULL; }
  227. Domain { BEGIN(CODEBLOCK_HEADER); return TOKEN_DOMAIN; }
  228. Compute { BEGIN(CODEBLOCK_HEADER); return TOKEN_COMPUTE; }
  229. Common { BEGIN(CODEBLOCK_HEADER); return TOKEN_COMMON; }
  230. /* Track when the code block begins, insert all code block characters into our own buffer, record a sequential index */
  231. /* of all code blocks in the text, and track bracket open/closed state so we know when we're done with the code block. */
  232. /* And finally output a sequential code block index to the parser (it shouldn't be aware of anything else in the block). */
  233. <CODEBLOCK_HEADER>= { BEGIN(CODEBLOCK_EQUALS); return yytext[0]; }
  234. <CODEBLOCK_HEADER>{WS} { /* Skip blank */ }
  235. <CODEBLOCK_HEADER>. { return yytext[0]; }
  236. <CODEBLOCK_EQUALS>\{ { BEGIN(CODEBLOCK); beginCodeBlock(yyextra); yyextra->numOpenBrackets = 1; return yytext[0]; }
  237. <CODEBLOCK_EQUALS>{WS} { /* Skip blank */ }
  238. <CODEBLOCK_EQUALS>. { return yytext[0]; }
  239. <CODEBLOCK>\{ { yyextra->numOpenBrackets++; appendCodeBlock(yyextra, yytext, 1); }
  240. <CODEBLOCK>\} {
  241. yyextra->numOpenBrackets--;
  242. if(yyextra->numOpenBrackets == 0)
  243. {
  244. BEGIN(CODEBLOCK_END);
  245. unput('0');
  246. }
  247. else
  248. appendCodeBlock(yyextra, yytext, 1);
  249. }
  250. <CODEBLOCK>.|{SINGLEWS} { appendCodeBlock(yyextra, yytext, 1); }
  251. /* Logic for manually inserting "Index = codeBlockIndex;". We insert arbitrary numbers which allows us to sequentially */
  252. /* output all the tokens we need. We use only single-character values so we don't override anything in the text buffer */
  253. /* (since the starting value was also a single character "{"). */
  254. <CODEBLOCK_END>0 { unput('1'); return TOKEN_INDEX; }
  255. <CODEBLOCK_END>1 { unput('2'); return '='; }
  256. <CODEBLOCK_END>2 { yylval->intValue = getCodeBlockIndex(yyextra); unput('3'); return TOKEN_INTEGER; }
  257. <CODEBLOCK_END>3 { unput('4'); return ';'; }
  258. <CODEBLOCK_END>4 { BEGIN(INITIAL); return '}'; }
  259. <CODEBLOCK_END>.|{WS} { /* Never reached */ }
  260. /* Catch all rules */
  261. {COMMENT} { }
  262. {IDENTIFIER} { yylval->strValue = mmalloc_strdup(yyextra->memContext, yytext); return TOKEN_IDENTIFIER; }
  263. . { return yytext[0]; }
  264. %%