BsCoreObject.cpp 6.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213
  1. #include "BsCoreObject.h"
  2. #include "BsCoreThread.h"
  3. #include "BsCoreObjectManager.h"
  4. #include "BsCoreThreadAccessor.h"
  5. #include "BsDebug.h"
  6. using namespace std::placeholders;
  7. namespace BansheeEngine
  8. {
  9. BS_STATIC_THREAD_SYNCHRONISER_CLASS_INSTANCE(mCoreGpuObjectLoadedCondition, CoreObject)
  10. BS_STATIC_MUTEX_CLASS_INSTANCE(mCoreGpuObjectLoadedMutex, CoreObject)
  11. CoreObject::CoreObject(bool initializeOnRenderThread)
  12. : mFlags(0), mInternalID(0), mCoreDirtyFlags(0xFFFFFFFF)
  13. {
  14. mInternalID = CoreObjectManager::instance().registerObject(this);
  15. mFlags = initializeOnRenderThread ? mFlags | CGO_INIT_ON_CORE_THREAD : mFlags;
  16. }
  17. CoreObject::~CoreObject()
  18. {
  19. if(isInitialized())
  20. {
  21. // Object must be released with destroy() otherwise engine can still try to use it, even if it was destructed
  22. // (e.g. if an object has one of its methods queued in a command queue, and is destructed, you will be accessing invalid memory)
  23. BS_EXCEPT(InternalErrorException, "Destructor called but object is not destroyed. This will result in nasty issues.");
  24. }
  25. #if BS_DEBUG_MODE
  26. if(!mThis.expired())
  27. {
  28. BS_EXCEPT(InternalErrorException, "Shared pointer to this object still has active references but " \
  29. "the object is being deleted? You shouldn't delete CoreObjects manually.");
  30. }
  31. #endif
  32. CoreObjectManager::instance().unregisterObject(this);
  33. }
  34. void CoreObject::destroy()
  35. {
  36. if(requiresInitOnCoreThread())
  37. {
  38. setScheduledToBeDeleted(true);
  39. if(BS_THREAD_CURRENT_ID == CoreThread::instance().getCoreThreadId())
  40. mThis.lock()->destroy_internal();
  41. else
  42. queueDestroyGpuCommand(mThis.lock());
  43. }
  44. else
  45. {
  46. destroy_internal();
  47. }
  48. }
  49. void CoreObject::destroy_internal()
  50. {
  51. #if BS_DEBUG_MODE
  52. if(!isInitialized())
  53. BS_EXCEPT(InternalErrorException, "Trying to destroy an object that is already destroyed (or it never was initialized).");
  54. #endif
  55. if (mCoreSpecific != nullptr)
  56. mCoreSpecific->destroy();
  57. setIsInitialized(false);
  58. }
  59. void CoreObject::initialize()
  60. {
  61. #if BS_DEBUG_MODE
  62. if(isInitialized() || isScheduledToBeInitialized())
  63. BS_EXCEPT(InternalErrorException, "Trying to initialize an object that is already initialized.");
  64. #endif
  65. mCoreSpecific = createCore();
  66. if(requiresInitOnCoreThread())
  67. {
  68. setScheduledToBeInitialized(true);
  69. if(BS_THREAD_CURRENT_ID == CoreThread::instance().getCoreThreadId())
  70. mThis.lock()->initialize_internal();
  71. else
  72. queueInitializeGpuCommand(mThis.lock());
  73. }
  74. else
  75. {
  76. initialize_internal();
  77. }
  78. }
  79. void CoreObject::initialize_internal()
  80. {
  81. if (mCoreSpecific != nullptr)
  82. mCoreSpecific->initialize();
  83. if(requiresInitOnCoreThread())
  84. {
  85. {
  86. BS_LOCK_MUTEX(mCoreGpuObjectLoadedMutex);
  87. setIsInitialized(true);
  88. }
  89. setScheduledToBeInitialized(false);
  90. BS_THREAD_NOTIFY_ALL(mCoreGpuObjectLoadedCondition);
  91. }
  92. else
  93. {
  94. setIsInitialized(true);
  95. }
  96. }
  97. void CoreObject::synchronize()
  98. {
  99. if(!isInitialized())
  100. {
  101. if(requiresInitOnCoreThread())
  102. {
  103. #if BS_DEBUG_MODE
  104. if(BS_THREAD_CURRENT_ID == CoreThread::instance().getCoreThreadId())
  105. BS_EXCEPT(InternalErrorException, "You cannot call this method on the core thread. It will cause a deadlock!");
  106. #endif
  107. BS_LOCK_MUTEX_NAMED(mCoreGpuObjectLoadedMutex, lock);
  108. while(!isInitialized())
  109. {
  110. if(!isScheduledToBeInitialized())
  111. BS_EXCEPT(InternalErrorException, "Attempting to wait until initialization finishes but object is not scheduled to be initialized.");
  112. BS_THREAD_WAIT(mCoreGpuObjectLoadedCondition, mCoreGpuObjectLoadedMutex, lock);
  113. }
  114. }
  115. else
  116. {
  117. BS_EXCEPT(InternalErrorException, "Attempting to wait until initialization finishes but object is not scheduled to be initialized.");
  118. }
  119. }
  120. }
  121. void CoreObject::_setThisPtr(std::shared_ptr<CoreObject> ptrThis)
  122. {
  123. mThis = ptrThis;
  124. }
  125. void CoreObject::_deleteDelayedInternal(CoreObject* obj)
  126. {
  127. assert(obj != nullptr);
  128. // This method usually gets called automatically by the shared pointer when all references are released. The process:
  129. // - If the object wasn't initialized delete it right away
  130. // - Otherwise:
  131. // - We re-create the reference to the object by setting mThis pointer
  132. // - We queue the object to be destroyed so all of its GPU resources may be released on the core thread
  133. // - destroy() makes sure it keeps a reference of mThis so object isn't deleted
  134. // - Once the destroy() finishes the reference is removed and the default shared_ptr deleter is called
  135. #if BS_DEBUG_MODE
  136. if(obj->isScheduledToBeInitialized())
  137. {
  138. BS_EXCEPT(InternalErrorException, "Object scheduled to be initialized, yet it's being deleted. " \
  139. "By design objects queued in the command queue should always have a reference count >= 1, therefore never be deleted " \
  140. "while still in the queue.");
  141. }
  142. #endif
  143. }
  144. void CoreObject::queueGpuCommand(std::shared_ptr<CoreObject>& obj, std::function<void()> func)
  145. {
  146. // We call another internal method and go through an additional layer of abstraction in order to keep an active
  147. // reference to the obj (saved in the bound function).
  148. // We could have called the function directly using "this" pointer but then we couldn't have used a shared_ptr for the object,
  149. // in which case there is a possibility that the object would be released and deleted while still being in the command queue.
  150. gCoreAccessor().queueCommand(std::bind(&CoreObject::executeGpuCommand, obj, func));
  151. }
  152. AsyncOp CoreObject::queueReturnGpuCommand(std::shared_ptr<CoreObject>& obj, std::function<void(AsyncOp&)> func)
  153. {
  154. // See queueGpuCommand
  155. return gCoreAccessor().queueReturnCommand(std::bind(&CoreObject::executeReturnGpuCommand, obj, func, _1));
  156. }
  157. void CoreObject::queueInitializeGpuCommand(std::shared_ptr<CoreObject>& obj)
  158. {
  159. std::function<void()> func = std::bind(&CoreObject::initialize_internal, obj.get());
  160. CoreThread::instance().queueCommand(std::bind(&CoreObject::executeGpuCommand, obj, func));
  161. }
  162. void CoreObject::queueDestroyGpuCommand(std::shared_ptr<CoreObject>& obj)
  163. {
  164. std::function<void()> func = std::bind(&CoreObject::destroy_internal, obj.get());
  165. gCoreAccessor().queueCommand(std::bind(&CoreObject::executeGpuCommand, obj, func));
  166. }
  167. void CoreObject::executeGpuCommand(std::shared_ptr<CoreObject> obj, std::function<void()> func)
  168. {
  169. volatile std::shared_ptr<CoreObject> objParam = obj; // Makes sure obj isn't optimized out?
  170. func();
  171. }
  172. void CoreObject::executeReturnGpuCommand(std::shared_ptr<CoreObject> obj, std::function<void(AsyncOp&)> func, AsyncOp& op)
  173. {
  174. volatile std::shared_ptr<CoreObject> objParam = obj; // Makes sure obj isn't optimized out?
  175. func(op);
  176. }
  177. }