TiledDeferredImageBasedLighting.bsl 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290
  1. #include "$ENGINE$\GBufferInput.bslinc"
  2. #include "$ENGINE$\PerCameraData.bslinc"
  3. #include "$ENGINE$\ReflectionCubemapCommon.bslinc"
  4. #define USE_COMPUTE_INDICES
  5. #include "$ENGINE$\LightingCommon.bslinc"
  6. #include "$ENGINE$\ImageBasedLighting.bslinc"
  7. technique TiledDeferredImageBasedLighting
  8. {
  9. mixin GBufferInput;
  10. mixin PerCameraData;
  11. mixin LightingCommon;
  12. mixin ReflectionCubemapCommon;
  13. mixin ImageBasedLighting;
  14. code
  15. {
  16. [internal]
  17. cbuffer Params : register(b0)
  18. {
  19. uint2 gFramebufferSize;
  20. }
  21. #if MSAA_COUNT > 1
  22. Buffer<float4> gInColor;
  23. RWBuffer<float4> gOutput;
  24. uint getLinearAddress(uint2 coord, uint sampleIndex)
  25. {
  26. return (coord.y * gFramebufferSize.x + coord.x) * MSAA_COUNT + sampleIndex;
  27. }
  28. void writeBufferSample(uint2 coord, uint sampleIndex, float4 color)
  29. {
  30. uint idx = getLinearAddress(coord, sampleIndex);
  31. gOutput[idx] = color;
  32. }
  33. float4 readInColorSample(uint2 coord, uint sampleIndex)
  34. {
  35. uint idx = getLinearAddress(coord, sampleIndex);
  36. return gInColor[idx];
  37. }
  38. #else
  39. Texture2D<float4> gInColor;
  40. RWTexture2D<float4> gOutput;
  41. #endif
  42. groupshared uint sTileMinZ;
  43. groupshared uint sTileMaxZ;
  44. void getTileZBounds(uint threadIndex, SurfaceData surfaceData[MSAA_COUNT], out float minTileZ, out float maxTileZ)
  45. {
  46. // Note: To improve performance perhaps:
  47. // - Use halfZ (split depth range into two regions for better culling)
  48. // - Use parallel reduction instead of atomics
  49. uint sampleMinZ = 0x7F7FFFFF;
  50. uint sampleMaxZ = 0;
  51. #if MSAA_COUNT > 1
  52. [unroll]
  53. for(uint i = 0; i < MSAA_COUNT; ++i)
  54. {
  55. sampleMinZ = min(sampleMinZ, asuint(-surfaceData[i].depth));
  56. sampleMaxZ = max(sampleMaxZ, asuint(-surfaceData[i].depth));
  57. }
  58. #else
  59. sampleMinZ = asuint(-surfaceData[0].depth);
  60. sampleMaxZ = asuint(-surfaceData[0].depth);
  61. #endif
  62. // Set initial values
  63. if(threadIndex == 0)
  64. {
  65. sTileMinZ = 0x7F7FFFFF;
  66. sTileMaxZ = 0;
  67. }
  68. GroupMemoryBarrierWithGroupSync();
  69. // Determine minimum and maximum depth values for a tile
  70. InterlockedMin(sTileMinZ, sampleMinZ);
  71. InterlockedMax(sTileMaxZ, sampleMaxZ);
  72. GroupMemoryBarrierWithGroupSync();
  73. minTileZ = asfloat(sTileMinZ);
  74. maxTileZ = asfloat(sTileMaxZ);
  75. }
  76. void calcTileAABB(uint2 tileId, float viewZMin, float viewZMax, out float3 center, out float3 extent)
  77. {
  78. uint2 pixelPos = tileId * TILE_SIZE;
  79. // Convert threat XY coordinates to NDC coordinates
  80. float2 uvTopLeft = (pixelPos + 0.5f) / gFramebufferSize;
  81. float2 uvBottomRight = (pixelPos + uint2(TILE_SIZE, TILE_SIZE) - 0.5f) / gFramebufferSize;
  82. float3 ndcMin;
  83. float3 ndcMax;
  84. ndcMin.xy = uvTopLeft * 2.0f - float2(1.0f, 1.0f);
  85. ndcMax.xy = uvBottomRight * 2.0f - float2(1.0f, 1.0f);
  86. // Flip Y depending on render API, depending if Y in NDC is facing up or down
  87. // (We negate the value because we want NDC with Y flipped, so origin is top left)
  88. float flipY = -sign(gMatProj[1][1]);
  89. ndcMin.y *= flipY;
  90. ndcMax.y *= flipY;
  91. // Camera is looking along negative z, therefore min in view space is max in NDC
  92. ndcMin.z = convertToNDCZ(viewZMax);
  93. ndcMax.z = convertToNDCZ(viewZMin);
  94. float4 corner[5];
  95. // Far
  96. corner[0] = mul(gMatInvProj, float4(ndcMin.x, ndcMin.y, ndcMax.z, 1.0f));
  97. corner[1] = mul(gMatInvProj, float4(ndcMax.x, ndcMin.y, ndcMax.z, 1.0f));
  98. corner[2] = mul(gMatInvProj, float4(ndcMax.x, ndcMax.y, ndcMax.z, 1.0f));
  99. corner[3] = mul(gMatInvProj, float4(ndcMin.x, ndcMax.y, ndcMax.z, 1.0f));
  100. // Near (only one point, as the far away face is guaranteed to be larger in XY extents)
  101. corner[4] = mul(gMatInvProj, float4(ndcMin.x, ndcMin.y, ndcMin.z, 1.0f));
  102. [unroll]
  103. for(uint i = 0; i < 5; ++i)
  104. corner[i].xy /= corner[i].w;
  105. float3 viewMin = float3(corner[0].xy, viewZMin);
  106. float3 viewMax = float3(corner[0].xy, viewZMax);
  107. [unroll]
  108. for(uint i = 1; i < 4; ++i)
  109. {
  110. viewMin.xy = min(viewMin.xy, corner[i].xy);
  111. viewMax.xy = max(viewMax.xy, corner[i].xy);
  112. }
  113. extent = (viewMax - viewMin) * 0.5f;
  114. center = viewMin + extent;
  115. }
  116. bool intersectSphereBox(float3 sCenter, float sRadius, float3 bCenter, float3 bExtents)
  117. {
  118. float3 closestOnBox = max(0, abs(bCenter - sCenter) - bExtents);
  119. return dot(closestOnBox, closestOnBox) < sRadius * sRadius;
  120. }
  121. float4 getLighting(uint2 pixelPos, uint sampleIdx, float2 clipSpacePos, SurfaceData surfaceData, uint probeOffset, uint numProbes)
  122. {
  123. // x, y are now in clip space, z, w are in view space
  124. // We multiply them by a special inverse view-projection matrix, that had the projection entries that effect
  125. // z, w eliminated (since they are already in view space)
  126. // Note: Multiply by depth should be avoided if using ortographic projection
  127. float4 mixedSpacePos = float4(clipSpacePos * -surfaceData.depth, surfaceData.depth, 1);
  128. float4 worldPosition4D = mul(gMatScreenToWorld, mixedSpacePos);
  129. float3 worldPosition = worldPosition4D.xyz / worldPosition4D.w;
  130. float3 V = normalize(gViewOrigin - worldPosition);
  131. float3 N = surfaceData.worldNormal.xyz;
  132. float3 R = 2 * dot(V, N) * N - V;
  133. float3 specR = getSpecularDominantDir(N, R, surfaceData.roughness);
  134. float4 existingColor;
  135. #if MSAA_COUNT > 1
  136. existingColor = readInColorSample(pixelPos, sampleIdx);
  137. #else
  138. existingColor = gInColor.Load(int3(pixelPos.xy, 0));
  139. #endif
  140. float3 indirectDiffuse = getSkyIndirectDiffuse(N) * surfaceData.albedo.rgb;
  141. float3 imageBasedSpecular = getImageBasedSpecular(worldPosition, V, specR, surfaceData, probeOffset, numProbes);
  142. float4 totalLighting = existingColor;
  143. totalLighting.rgb += indirectDiffuse;
  144. totalLighting.rgb += imageBasedSpecular;
  145. return totalLighting;
  146. }
  147. groupshared uint gUnsortedProbeIndices[MAX_PROBES];
  148. groupshared uint sNumProbes;
  149. [numthreads(TILE_SIZE, TILE_SIZE, 1)]
  150. void csmain(
  151. uint3 groupId : SV_GroupID,
  152. uint3 groupThreadId : SV_GroupThreadID,
  153. uint3 dispatchThreadId : SV_DispatchThreadID)
  154. {
  155. uint threadIndex = groupThreadId.y * TILE_SIZE + groupThreadId.x;
  156. uint2 pixelPos = dispatchThreadId.xy + gViewportRectangle.xy;
  157. // Get data for all samples
  158. SurfaceData surfaceData[MSAA_COUNT];
  159. #if MSAA_COUNT > 1
  160. [unroll]
  161. for(uint i = 0; i < MSAA_COUNT; ++i)
  162. surfaceData[i] = getGBufferData(pixelPos, i);
  163. #else
  164. surfaceData[0] = getGBufferData(pixelPos);
  165. #endif
  166. // Set initial values
  167. if(threadIndex == 0)
  168. sNumProbes = 0;
  169. // Determine per-pixel minimum and maximum depth values
  170. float minTileZ, maxTileZ;
  171. getTileZBounds(threadIndex, surfaceData, minTileZ, maxTileZ);
  172. // Create AABB for the current tile
  173. float3 center, extent;
  174. calcTileAABB(groupId.xy, minTileZ, maxTileZ, center, extent);
  175. // Find probes overlapping the tile
  176. for (uint i = 0; i < gNumProbes && i < MAX_LIGHTS; i += TILE_SIZE)
  177. {
  178. float4 probePosition = mul(gMatView, float4(gReflectionProbes[i].position, 1.0f));
  179. float probeRadius = gReflectionProbes[i].radius;
  180. if(intersectSphereBox(probePosition, probeRadius, center, extent))
  181. {
  182. uint idx;
  183. InterlockedAdd(sNumProbes, 1U, idx);
  184. gUnsortedProbeIndices[idx] = i;
  185. }
  186. }
  187. GroupMemoryBarrierWithGroupSync();
  188. // Sort based on original indices. Using parallel enumeration sort (n^2) - could be faster
  189. const uint numThreads = TILE_SIZE * TILE_SIZE;
  190. for (uint i = threadIndex; i < sNumProbes; i += numThreads)
  191. {
  192. int idx = gUnsortedProbeIndices[i];
  193. uint smallerCount = 0;
  194. for (uint j = 0; j < sNumProbes; j++)
  195. {
  196. int otherIdx = gUnsortedProbeIndices[j];
  197. if (otherIdx < idx)
  198. smallerCount++;
  199. }
  200. gReflectionProbeIndices[smallerCount] = gUnsortedProbeIndices[i];
  201. }
  202. GroupMemoryBarrierWithGroupSync();
  203. // Generate world position
  204. float2 screenUv = ((float2)(gViewportRectangle.xy + pixelPos) + 0.5f) / (float2)gViewportRectangle.zw;
  205. float2 clipSpacePos = (screenUv - gClipToUVScaleOffset.zw) / gClipToUVScaleOffset.xy;
  206. uint2 viewportMax = gViewportRectangle.xy + gViewportRectangle.zw;
  207. // Ignore pixels out of valid range
  208. if (all(dispatchThreadId.xy < viewportMax))
  209. {
  210. #if MSAA_COUNT > 1
  211. float4 lighting = getLighting(pixelPos, 0, clipSpacePos.xy, surfaceData[0], 0, gNumProbes);
  212. writeBufferSample(pixelPos, 0, lighting);
  213. bool doPerSampleShading = needsPerSampleShading(surfaceData);
  214. if(doPerSampleShading)
  215. {
  216. [unroll]
  217. for(uint i = 1; i < MSAA_COUNT; ++i)
  218. {
  219. lighting = getLighting(pixelPos, i, clipSpacePos.xy, surfaceData[i], 0, gNumProbes);
  220. writeBufferSample(pixelPos, i, lighting);
  221. }
  222. }
  223. else // Splat same information to all samples
  224. {
  225. [unroll]
  226. for(uint i = 1; i < MSAA_COUNT; ++i)
  227. writeBufferSample(pixelPos, i, lighting);
  228. }
  229. #else
  230. float4 lighting = getLighting(pixelPos, 0, clipSpacePos.xy, surfaceData[0], 0, gNumProbes);
  231. gOutput[pixelPos] = lighting;
  232. #endif
  233. }
  234. }
  235. };
  236. };