BsMeshHeap.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677
  1. #include "BsMeshHeap.h"
  2. #include "BsCoreThread.h"
  3. #include "BsTransientMesh.h"
  4. #include "BsHardwareBufferManager.h"
  5. #include "BsVertexDataDesc.h"
  6. #include "BsVertexData.h"
  7. #include "BsMeshData.h"
  8. #include "BsMath.h"
  9. #include "BsEventQuery.h"
  10. namespace BansheeEngine
  11. {
  12. const float MeshHeap::GrowPercent = 1.5f;
  13. MeshHeap::MeshHeap(UINT32 numVertices, UINT32 numIndices,
  14. const VertexDataDescPtr& vertexDesc, IndexBuffer::IndexType indexType)
  15. :mNumVertices(numVertices), mNumIndices(numIndices), mNextFreeId(0),
  16. mIndexType(indexType), mVertexDesc(vertexDesc), mCPUIndexData(nullptr),
  17. mNextQueryId(0)
  18. {
  19. for(UINT32 i = 0; i <= mVertexDesc->getMaxStreamIdx(); i++)
  20. {
  21. mCPUVertexData.push_back(nullptr);
  22. }
  23. }
  24. MeshHeap::~MeshHeap()
  25. {
  26. }
  27. MeshHeapPtr MeshHeap::create(UINT32 numVertices, UINT32 numIndices,
  28. const VertexDataDescPtr& vertexDesc, IndexBuffer::IndexType indexType)
  29. {
  30. MeshHeap* meshHeap = new (bs_alloc<MeshHeap>()) MeshHeap(numVertices, numIndices, vertexDesc, indexType);
  31. MeshHeapPtr meshHeapPtr = bs_core_ptr<MeshHeap, GenAlloc>(meshHeap);
  32. meshHeapPtr->_setThisPtr(meshHeapPtr);
  33. meshHeapPtr->initialize();
  34. return meshHeapPtr;
  35. }
  36. void MeshHeap::initialize_internal()
  37. {
  38. THROW_IF_NOT_CORE_THREAD;
  39. growVertexBuffer(mNumVertices);
  40. growIndexBuffer(mNumIndices);
  41. }
  42. void MeshHeap::destroy_internal()
  43. {
  44. THROW_IF_NOT_CORE_THREAD;
  45. for(auto& cpuVertBuffer : mCPUVertexData)
  46. bs_free(cpuVertBuffer);
  47. if(mCPUIndexData != nullptr)
  48. bs_free(mCPUIndexData);
  49. CoreObject::destroy_internal();
  50. }
  51. TransientMeshPtr MeshHeap::alloc(const MeshDataPtr& meshData, DrawOperationType drawOp)
  52. {
  53. UINT32 meshIdx = mNextFreeId++;
  54. MeshHeapPtr thisPtr = std::static_pointer_cast<MeshHeap>(getThisPtr());
  55. TransientMesh* transientMesh = new (bs_alloc<TransientMesh>()) TransientMesh(thisPtr, meshIdx, meshData->getNumVertices(), meshData->getNumIndices(), drawOp);
  56. TransientMeshPtr transientMeshPtr = bs_core_ptr<TransientMesh, GenAlloc>(transientMesh);
  57. transientMeshPtr->_setThisPtr(transientMeshPtr);
  58. transientMeshPtr->initialize();
  59. mMeshes[meshIdx] = transientMeshPtr;
  60. queueGpuCommand(getThisPtr(), std::bind(&MeshHeap::allocInternal, this, transientMeshPtr, meshData));
  61. return transientMeshPtr;
  62. }
  63. void MeshHeap::dealloc(const TransientMeshPtr& mesh)
  64. {
  65. auto iterFind = mMeshes.find(mesh->mId);
  66. if(iterFind == mMeshes.end())
  67. return;
  68. mesh->markAsDestroyed();
  69. mMeshes.erase(iterFind);
  70. queueGpuCommand(getThisPtr(), std::bind(&MeshHeap::deallocInternal, this, mesh));
  71. }
  72. void MeshHeap::allocInternal(TransientMeshPtr mesh, const MeshDataPtr& meshData)
  73. {
  74. // Find free vertex chunk and grow if needed
  75. UINT32 smallestVertFit = 0;
  76. UINT32 smallestVertFitIdx = 0;
  77. bool buffersModified = false;
  78. while(smallestVertFit == 0)
  79. {
  80. UINT32 curIdx = 0;
  81. for(auto& chunkIdx : mFreeVertChunks)
  82. {
  83. ChunkData& chunk = mVertChunks[chunkIdx];
  84. if(chunk.size >= meshData->getNumVertices() && (chunk.size < smallestVertFit || smallestVertFit == 0))
  85. {
  86. smallestVertFit = chunk.size;
  87. smallestVertFitIdx = curIdx;
  88. }
  89. curIdx++;
  90. }
  91. if(smallestVertFit > 0)
  92. break;
  93. UINT32 newNumVertices = mNumVertices;
  94. while(newNumVertices < (mNumVertices + meshData->getNumVertices()))
  95. {
  96. newNumVertices = Math::roundToInt(newNumVertices * GrowPercent);
  97. }
  98. growVertexBuffer(newNumVertices);
  99. buffersModified = true;
  100. }
  101. // Find free index chunk and grow if needed
  102. UINT32 smallestIdxFit = 0;
  103. UINT32 smallestIdxFitIdx = 0;
  104. while(smallestIdxFit == 0)
  105. {
  106. UINT32 curIdx = 0;
  107. for(auto& chunkIdx : mFreeIdxChunks)
  108. {
  109. ChunkData& chunk = mIdxChunks[chunkIdx];
  110. if(chunk.size >= meshData->getNumIndices() && (chunk.size < smallestIdxFit || smallestIdxFit == 0))
  111. {
  112. smallestIdxFit = chunk.size;
  113. smallestIdxFitIdx = curIdx;
  114. }
  115. curIdx++;
  116. }
  117. if(smallestIdxFit > 0)
  118. break;
  119. UINT32 newNumIndices = mNumIndices;
  120. while(newNumIndices < (mNumIndices + meshData->getNumIndices()))
  121. {
  122. newNumIndices = Math::roundToInt(newNumIndices * GrowPercent);
  123. }
  124. growIndexBuffer(newNumIndices);
  125. buffersModified = true;
  126. }
  127. if (buffersModified)
  128. {
  129. for (auto& allocData : mMeshAllocData)
  130. {
  131. if (allocData.second.useFlags != UseFlags::CPUFree && allocData.second.useFlags != UseFlags::Free)
  132. allocData.second.mesh->_updateProxy();
  133. }
  134. }
  135. UINT32 freeVertChunkIdx = 0;
  136. UINT32 freeIdxChunkIdx = 0;
  137. auto freeVertIter = mFreeVertChunks.begin();
  138. freeVertChunkIdx = (*freeVertIter);
  139. for(UINT32 i = 0; i < smallestVertFitIdx; i++)
  140. {
  141. freeVertIter++;
  142. freeVertChunkIdx = (*freeVertIter);
  143. }
  144. mFreeVertChunks.erase(freeVertIter);
  145. auto freeIdxIter = mFreeIdxChunks.begin();
  146. freeIdxChunkIdx = (*freeIdxIter);
  147. for(UINT32 i = 0; i < smallestIdxFitIdx; i++)
  148. {
  149. freeIdxIter++;
  150. freeIdxChunkIdx = (*freeIdxIter);
  151. }
  152. mFreeIdxChunks.erase(freeIdxIter);
  153. ChunkData& vertChunk = mVertChunks[freeVertChunkIdx];
  154. ChunkData& idxChunk = mIdxChunks[freeIdxChunkIdx];
  155. UINT32 vertChunkStart = vertChunk.start;
  156. UINT32 idxChunkStart = idxChunk.start;
  157. UINT32 remainingNumVerts = vertChunk.size - meshData->getNumVertices();
  158. UINT32 remainingNumIdx = idxChunk.size - meshData->getNumIndices();
  159. vertChunk.size = meshData->getNumVertices();
  160. idxChunk.size = meshData->getNumIndices();
  161. if(remainingNumVerts > 0)
  162. {
  163. if(!mEmptyVertChunks.empty())
  164. {
  165. UINT32 emptyChunkIdx = mEmptyVertChunks.top();
  166. ChunkData& emptyChunk = mVertChunks[emptyChunkIdx];
  167. mEmptyVertChunks.pop();
  168. emptyChunk.start = vertChunkStart + meshData->getNumVertices();
  169. emptyChunk.size = remainingNumVerts;
  170. }
  171. else
  172. {
  173. ChunkData newChunk;
  174. newChunk.size = remainingNumVerts;
  175. newChunk.start = vertChunkStart + meshData->getNumVertices();
  176. mVertChunks.push_back(newChunk);
  177. mFreeVertChunks.push_back((UINT32)(mVertChunks.size() - 1));
  178. }
  179. }
  180. if(remainingNumIdx > 0)
  181. {
  182. if(!mEmptyIdxChunks.empty())
  183. {
  184. UINT32 emptyChunkIdx = mEmptyIdxChunks.top();
  185. ChunkData& emptyChunk = mIdxChunks[emptyChunkIdx];
  186. mEmptyIdxChunks.pop();
  187. emptyChunk.start = idxChunkStart + meshData->getNumIndices();
  188. emptyChunk.size = remainingNumIdx;
  189. }
  190. else
  191. {
  192. ChunkData newChunk;
  193. newChunk.size = remainingNumIdx;
  194. newChunk.start = idxChunkStart + meshData->getNumIndices();
  195. mIdxChunks.push_back(newChunk);
  196. mFreeIdxChunks.push_back((UINT32)(mIdxChunks.size() - 1));
  197. }
  198. }
  199. AllocatedData newAllocData;
  200. newAllocData.vertChunkIdx = freeVertChunkIdx;
  201. newAllocData.idxChunkIdx = freeIdxChunkIdx;
  202. newAllocData.useFlags = UseFlags::GPUFree;
  203. newAllocData.eventQueryIdx = createEventQuery();
  204. newAllocData.mesh = mesh;
  205. mMeshAllocData[mesh->getMeshHeapId()] = newAllocData;
  206. // Actually copy data
  207. for(UINT32 i = 0; i <= mVertexDesc->getMaxStreamIdx(); i++)
  208. {
  209. if(!mVertexDesc->hasStream(i))
  210. continue;
  211. if(!meshData->getVertexDesc()->hasStream(i))
  212. continue;
  213. // Ensure vertex sizes match
  214. UINT32 vertSize = mVertexData->vertexDeclaration->getVertexSize(i);
  215. UINT32 otherVertSize = meshData->getVertexDesc()->getVertexStride(i);
  216. if(otherVertSize != vertSize)
  217. {
  218. BS_EXCEPT(InvalidParametersException, "Provided vertex size for stream " + toString(i) + " doesn't match meshes vertex size. Needed: " +
  219. toString(vertSize) + ". Got: " + toString(otherVertSize));
  220. }
  221. VertexBufferPtr vertexBuffer = mVertexData->getBuffer(i);
  222. UINT8* vertDest = mCPUVertexData[i] + vertChunkStart * vertSize;
  223. memcpy(vertDest, meshData->getStreamData(i), meshData->getNumVertices() * vertSize);
  224. if(vertexBuffer->vertexColorReqRGBFlip())
  225. {
  226. UINT32 vertexStride = mVertexDesc->getVertexStride(i);
  227. for(INT32 semanticIdx = 0; semanticIdx < VertexBuffer::MAX_SEMANTIC_IDX; semanticIdx++)
  228. {
  229. if(!mVertexDesc->hasElement(VES_COLOR, semanticIdx, i))
  230. continue;
  231. UINT8* colorData = vertDest + mVertexDesc->getElementOffsetFromStream(VES_COLOR, semanticIdx, i);
  232. for(UINT32 j = 0; j < mVertexData->vertexCount; j++)
  233. {
  234. UINT32* curColor = (UINT32*)colorData;
  235. (*curColor) = ((*curColor) & 0xFF00FF00) | ((*curColor >> 16) & 0x000000FF) | ((*curColor << 16) & 0x00FF0000);
  236. colorData += vertexStride;
  237. }
  238. }
  239. }
  240. vertexBuffer->writeData(vertChunkStart * vertSize, meshData->getNumVertices() * vertSize, vertDest, BufferWriteType::NoOverwrite);
  241. }
  242. UINT32 idxSize = mIndexBuffer->getIndexSize();
  243. // Ensure index sizes match
  244. if(meshData->getIndexElementSize() != idxSize)
  245. {
  246. BS_EXCEPT(InvalidParametersException, "Provided index size doesn't match meshes index size. Needed: " +
  247. toString(idxSize) + ". Got: " + toString(meshData->getIndexElementSize()));
  248. }
  249. UINT8* idxDest = mCPUIndexData + idxChunkStart * idxSize;
  250. memcpy(idxDest, meshData->getIndexData(), meshData->getNumIndices() * idxSize);
  251. mIndexBuffer->writeData(idxChunkStart * idxSize, meshData->getNumIndices() * idxSize, idxDest, BufferWriteType::NoOverwrite);
  252. mesh->_updateProxy();
  253. }
  254. void MeshHeap::deallocInternal(TransientMeshPtr mesh)
  255. {
  256. auto findIter = mMeshAllocData.find(mesh->getMeshHeapId());
  257. assert(findIter != mMeshAllocData.end());
  258. AllocatedData& allocData = findIter->second;
  259. if(allocData.useFlags == UseFlags::GPUFree)
  260. {
  261. allocData.useFlags = UseFlags::Free;
  262. freeEventQuery(allocData.eventQueryIdx);
  263. mFreeVertChunks.push_back(allocData.vertChunkIdx);
  264. mFreeIdxChunks.push_back(allocData.idxChunkIdx);
  265. mergeWithNearbyChunks(allocData.vertChunkIdx, allocData.idxChunkIdx);
  266. mMeshAllocData.erase(findIter);
  267. }
  268. else if(allocData.useFlags == UseFlags::Used)
  269. allocData.useFlags = UseFlags::CPUFree;
  270. }
  271. void MeshHeap::growVertexBuffer(UINT32 numVertices)
  272. {
  273. mNumVertices = numVertices;
  274. mVertexData = std::shared_ptr<VertexData>(bs_new<VertexData, PoolAlloc>());
  275. mVertexData->vertexCount = mNumVertices;
  276. mVertexData->vertexDeclaration = mVertexDesc->createDeclaration();
  277. // Create buffers and copy data
  278. for(UINT32 i = 0; i <= mVertexDesc->getMaxStreamIdx(); i++)
  279. {
  280. if(!mVertexDesc->hasStream(i))
  281. continue;
  282. UINT32 vertSize = mVertexData->vertexDeclaration->getVertexSize(i);
  283. VertexBufferPtr vertexBuffer = HardwareBufferManager::instance().createVertexBuffer(
  284. vertSize, mVertexData->vertexCount, GBU_DYNAMIC);
  285. mVertexData->setBuffer(i, vertexBuffer);
  286. // Copy all data to the new buffer
  287. UINT8* oldBuffer = mCPUVertexData[i];
  288. UINT8* buffer = (UINT8*)bs_alloc(vertSize * numVertices);
  289. UINT32 destOffset = 0;
  290. if(oldBuffer != nullptr)
  291. {
  292. for(auto& allocData : mMeshAllocData)
  293. {
  294. ChunkData& oldChunk = mVertChunks[allocData.second.vertChunkIdx];
  295. UINT8* oldData = oldBuffer + oldChunk.start * vertSize;
  296. memcpy(buffer + destOffset * vertSize, oldData, oldChunk.size * vertSize);
  297. destOffset += oldChunk.size;
  298. }
  299. bs_free(oldBuffer);
  300. }
  301. if(destOffset > 0)
  302. vertexBuffer->writeData(0, destOffset * vertSize, buffer, BufferWriteType::NoOverwrite);
  303. mCPUVertexData[i] = buffer;
  304. }
  305. // Reorder chunks
  306. UINT32 destOffset = 0;
  307. Vector<ChunkData> newVertChunks;
  308. List<UINT32> freeVertChunks;
  309. for(auto& allocData : mMeshAllocData)
  310. {
  311. ChunkData& oldChunk = mVertChunks[allocData.second.vertChunkIdx];
  312. ChunkData newChunk;
  313. newChunk.start = destOffset;
  314. newChunk.size = oldChunk.size;
  315. allocData.second.vertChunkIdx = (UINT32)newVertChunks.size();
  316. newVertChunks.push_back(newChunk);
  317. destOffset += oldChunk.size;
  318. }
  319. // Add free chunk
  320. if(destOffset != mNumVertices)
  321. {
  322. ChunkData newChunk;
  323. newChunk.start = destOffset;
  324. newChunk.size = mNumVertices - destOffset;
  325. newVertChunks.push_back(newChunk);
  326. freeVertChunks.push_back((UINT32)(newVertChunks.size() - 1));
  327. }
  328. mVertChunks = newVertChunks;
  329. mFreeVertChunks = freeVertChunks;
  330. while(!mEmptyVertChunks.empty())
  331. mEmptyVertChunks.pop();
  332. }
  333. void MeshHeap::growIndexBuffer(UINT32 numIndices)
  334. {
  335. mNumIndices = numIndices;
  336. mIndexBuffer = HardwareBufferManager::instance().createIndexBuffer(mIndexType, mNumIndices, GBU_DYNAMIC);
  337. // Copy all data to the new buffer
  338. UINT32 idxSize = mIndexBuffer->getIndexSize();
  339. UINT8* oldBuffer = mCPUIndexData;
  340. UINT8* buffer = (UINT8*)bs_alloc(idxSize * numIndices);
  341. UINT32 destOffset = 0;
  342. if(oldBuffer != nullptr)
  343. {
  344. for(auto& allocData : mMeshAllocData)
  345. {
  346. ChunkData& oldChunk = mIdxChunks[allocData.second.idxChunkIdx];
  347. UINT8* oldData = oldBuffer + oldChunk.start * idxSize;
  348. memcpy(buffer + destOffset * idxSize, oldData, oldChunk.size * idxSize);
  349. destOffset += oldChunk.size;
  350. }
  351. bs_free(oldBuffer);
  352. }
  353. if(destOffset > 0)
  354. mIndexBuffer->writeData(0, destOffset * idxSize, buffer, BufferWriteType::NoOverwrite);
  355. mCPUIndexData = buffer;
  356. // Reorder chunks
  357. destOffset = 0;
  358. Vector<ChunkData> newIdxChunks;
  359. List<UINT32> freeIdxChunks;
  360. for(auto& allocData : mMeshAllocData)
  361. {
  362. ChunkData& oldChunk = mIdxChunks[allocData.second.idxChunkIdx];
  363. ChunkData newChunk;
  364. newChunk.start = destOffset;
  365. newChunk.size = oldChunk.size;
  366. allocData.second.idxChunkIdx = (UINT32)newIdxChunks.size();
  367. newIdxChunks.push_back(newChunk);
  368. destOffset += oldChunk.size;
  369. }
  370. // Add free chunk
  371. if(destOffset != mNumIndices)
  372. {
  373. ChunkData newChunk;
  374. newChunk.start = destOffset;
  375. newChunk.size = mNumIndices - destOffset;
  376. newIdxChunks.push_back(newChunk);
  377. freeIdxChunks.push_back((UINT32)(newIdxChunks.size() - 1));
  378. }
  379. mIdxChunks = newIdxChunks;
  380. mFreeIdxChunks = freeIdxChunks;
  381. while(!mEmptyIdxChunks.empty())
  382. mEmptyIdxChunks.pop();
  383. }
  384. UINT32 MeshHeap::createEventQuery()
  385. {
  386. UINT32 idx = 0;
  387. if(mFreeEventQueries.size() > 0)
  388. {
  389. idx = mFreeEventQueries.top();
  390. mFreeEventQueries.pop();
  391. }
  392. else
  393. {
  394. QueryData newQuery;
  395. newQuery.query = EventQuery::create();
  396. newQuery.queryId = 0;
  397. mEventQueries.push_back(newQuery);
  398. idx = (UINT32)(mEventQueries.size() - 1);
  399. }
  400. return idx;
  401. }
  402. void MeshHeap::freeEventQuery(UINT32 idx)
  403. {
  404. mEventQueries[idx].query->onTriggered.clear();
  405. mEventQueries[idx].queryId = 0;
  406. mFreeEventQueries.push(idx);
  407. }
  408. std::shared_ptr<VertexData> MeshHeap::_getVertexData() const
  409. {
  410. return mVertexData;
  411. }
  412. IndexBufferPtr MeshHeap::_getIndexBuffer() const
  413. {
  414. return mIndexBuffer;
  415. }
  416. UINT32 MeshHeap::getVertexOffset(UINT32 meshId) const
  417. {
  418. auto findIter = mMeshAllocData.find(meshId);
  419. assert(findIter != mMeshAllocData.end());
  420. UINT32 chunkIdx = findIter->second.vertChunkIdx;
  421. return mVertChunks[chunkIdx].start;
  422. }
  423. UINT32 MeshHeap::getIndexOffset(UINT32 meshId) const
  424. {
  425. auto findIter = mMeshAllocData.find(meshId);
  426. assert(findIter != mMeshAllocData.end());
  427. UINT32 chunkIdx = findIter->second.idxChunkIdx;
  428. return mIdxChunks[chunkIdx].start;
  429. }
  430. void MeshHeap::notifyUsedOnGPU(UINT32 meshId)
  431. {
  432. auto findIter = mMeshAllocData.find(meshId);
  433. assert(findIter != mMeshAllocData.end());
  434. AllocatedData& allocData = findIter->second;
  435. assert(allocData.useFlags != UseFlags::Free);
  436. if(allocData.useFlags == UseFlags::GPUFree)
  437. allocData.useFlags = UseFlags::Used;
  438. QueryData& queryData = mEventQueries[allocData.eventQueryIdx];
  439. queryData.queryId = mNextQueryId++;
  440. queryData.query->onTriggered.clear();
  441. queryData.query->onTriggered.connect(std::bind(&MeshHeap::queryTriggered, this, meshId, queryData.queryId));
  442. queryData.query->begin();
  443. }
  444. void MeshHeap::queryTriggered(UINT32 meshId, UINT32 queryId)
  445. {
  446. auto findIter = mMeshAllocData.find(meshId);
  447. assert(findIter != mMeshAllocData.end());
  448. AllocatedData& allocData = findIter->second;
  449. // If query ids don't match then it means there either a more recent query or
  450. // the buffer was discarded and we are not interested in query result
  451. QueryData& queryData = mEventQueries[allocData.eventQueryIdx];
  452. if(queryId == queryData.queryId)
  453. {
  454. assert(allocData.useFlags != UseFlags::Free && allocData.useFlags != UseFlags::GPUFree);
  455. if(allocData.useFlags == UseFlags::CPUFree)
  456. {
  457. allocData.useFlags = UseFlags::Free;
  458. freeEventQuery(allocData.eventQueryIdx);
  459. mFreeVertChunks.push_back(allocData.vertChunkIdx);
  460. mFreeIdxChunks.push_back(allocData.idxChunkIdx);
  461. mergeWithNearbyChunks(allocData.vertChunkIdx, allocData.idxChunkIdx);
  462. mMeshAllocData.erase(findIter);
  463. }
  464. else
  465. allocData.useFlags = UseFlags::GPUFree;
  466. }
  467. }
  468. void MeshHeap::mergeWithNearbyChunks(UINT32 chunkVertIdx, UINT32 chunkIdxIdx)
  469. {
  470. // Merge vertex chunks
  471. ChunkData& vertChunk = mVertChunks[chunkVertIdx];
  472. for(auto& freeChunkIdx : mFreeVertChunks)
  473. {
  474. if(chunkVertIdx == freeChunkIdx)
  475. continue;
  476. ChunkData& curChunk = mVertChunks[freeChunkIdx];
  477. if(curChunk.size == 0) // Already merged
  478. continue;
  479. bool merged = false;
  480. if(curChunk.start == (vertChunk.start + vertChunk.size))
  481. {
  482. vertChunk.size += curChunk.size;
  483. merged = true;
  484. }
  485. else if((curChunk.start + curChunk.size) == vertChunk.start)
  486. {
  487. vertChunk.start = curChunk.start;
  488. vertChunk.size += curChunk.size;
  489. merged = true;
  490. }
  491. if(merged)
  492. {
  493. // We can't remove the chunk since that would break the indexing scheme, so
  494. // mark it as empty and set size to 0. It will be reused when needed.
  495. curChunk.start = 0;
  496. curChunk.size = 0;
  497. mEmptyVertChunks.push(freeChunkIdx);
  498. }
  499. }
  500. // Merge index chunks
  501. ChunkData& idxChunk = mIdxChunks[chunkIdxIdx];
  502. for(auto& freeChunkIdx : mFreeIdxChunks)
  503. {
  504. if(chunkIdxIdx == freeChunkIdx)
  505. continue;
  506. ChunkData& curChunk = mIdxChunks[freeChunkIdx];
  507. if(curChunk.size == 0) // Already merged
  508. continue;
  509. bool merged = false;
  510. if(curChunk.start == (idxChunk.start + idxChunk.size))
  511. {
  512. idxChunk.size += curChunk.size;
  513. merged = true;
  514. }
  515. else if((curChunk.start + curChunk.size) == idxChunk.start)
  516. {
  517. idxChunk.start = curChunk.start;
  518. idxChunk.size += curChunk.size;
  519. merged = true;
  520. }
  521. if(merged)
  522. {
  523. // We can't remove the chunk since that would break the indexing scheme, so
  524. // mark it as empty and set size to 0. It will be reused when needed.
  525. curChunk.start = 0;
  526. curChunk.size = 0;
  527. mEmptyIdxChunks.push(freeChunkIdx);
  528. }
  529. }
  530. }
  531. }