2
0

BsMatrix3.h 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323
  1. #pragma once
  2. #include "BsPrerequisitesUtil.h"
  3. #include "BsVector3.h"
  4. namespace BansheeEngine
  5. {
  6. /**
  7. * @brief A 3x3 matrix. Can be used for non-homogenous transformations
  8. * of three dimensional vectors and points.
  9. */
  10. class BS_UTILITY_EXPORT Matrix3
  11. {
  12. private:
  13. struct EulerAngleOrderData
  14. {
  15. int a, b, c;
  16. float sign;
  17. };
  18. public:
  19. Matrix3() {}
  20. Matrix3(const Matrix3& mat)
  21. {
  22. memcpy(m, mat.m, 9*sizeof(float));
  23. }
  24. Matrix3(float m00, float m01, float m02,
  25. float m10, float m11, float m12,
  26. float m20, float m21, float m22)
  27. {
  28. m[0][0] = m00;
  29. m[0][1] = m01;
  30. m[0][2] = m02;
  31. m[1][0] = m10;
  32. m[1][1] = m11;
  33. m[1][2] = m12;
  34. m[2][0] = m20;
  35. m[2][1] = m21;
  36. m[2][2] = m22;
  37. }
  38. /**
  39. * @brief Construct a matrix from a quaternion.
  40. */
  41. explicit Matrix3(const Quaternion& rotation)
  42. {
  43. fromQuaternion(rotation);
  44. }
  45. /**
  46. * @brief Construct a matrix that performs rotation and scale.
  47. */
  48. explicit Matrix3(const Quaternion& rotation, const Vector3& scale)
  49. {
  50. fromQuaternion(rotation);
  51. for (int row = 0; row < 3; row++)
  52. {
  53. for (int col = 0; col < 3; col++)
  54. m[row][col] = scale[row]*m[row][col];
  55. }
  56. }
  57. /**
  58. * @brief Construct a matrix from an angle/axis pair.
  59. */
  60. explicit Matrix3(const Vector3& axis, const Radian& angle)
  61. {
  62. fromAxisAngle(axis, angle);
  63. }
  64. /**
  65. * @brief Construct a matrix from 3 orthonormal local axes.
  66. */
  67. explicit Matrix3(const Vector3& xaxis, const Vector3& yaxis, const Vector3& zaxis)
  68. {
  69. fromAxes(xaxis, yaxis, zaxis);
  70. }
  71. /**
  72. * @brief Construct a matrix from euler angles, YXZ ordering.
  73. *
  74. * @see Matrix3::fromEulerAngles
  75. */
  76. explicit Matrix3(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle)
  77. {
  78. fromEulerAngles(xAngle, yAngle, zAngle);
  79. }
  80. /**
  81. * @brief Construct a matrix from euler angles, custom ordering.
  82. *
  83. * @see Matrix3::fromEulerAngles
  84. */
  85. explicit Matrix3(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle, EulerAngleOrder order)
  86. {
  87. fromEulerAngles(xAngle, yAngle, zAngle, order);
  88. }
  89. /**
  90. * @brief Swaps the contents of this matrix with another.
  91. */
  92. void swap(Matrix3& other)
  93. {
  94. std::swap(m[0][0], other.m[0][0]);
  95. std::swap(m[0][1], other.m[0][1]);
  96. std::swap(m[0][2], other.m[0][2]);
  97. std::swap(m[1][0], other.m[1][0]);
  98. std::swap(m[1][1], other.m[1][1]);
  99. std::swap(m[1][2], other.m[1][2]);
  100. std::swap(m[2][0], other.m[2][0]);
  101. std::swap(m[2][1], other.m[2][1]);
  102. std::swap(m[2][2], other.m[2][2]);
  103. }
  104. /**
  105. * @brief Returns a row of the matrix.
  106. */
  107. inline float* operator[] (UINT32 row) const
  108. {
  109. assert(row < 3);
  110. return (float*)m[row];
  111. }
  112. Vector3 getColumn(UINT32 col) const;
  113. void setColumn(UINT32 col, const Vector3& vec);
  114. Matrix3& operator= (const Matrix3& rhs)
  115. {
  116. memcpy(m, rhs.m, 9*sizeof(float));
  117. return *this;
  118. }
  119. bool operator== (const Matrix3& rhs) const;
  120. bool operator!= (const Matrix3& rhs) const;
  121. Matrix3 operator+ (const Matrix3& rhs) const;
  122. Matrix3 operator- (const Matrix3& rhs) const;
  123. Matrix3 operator* (const Matrix3& rhs) const;
  124. Matrix3 operator- () const;
  125. Matrix3 operator* (float rhs) const;
  126. friend Matrix3 operator* (float lhs, const Matrix3& rhs);
  127. /**
  128. * @brief Transforms the given vector by this matrix and returns
  129. * the newly transformed vector.
  130. */
  131. Vector3 transform(const Vector3& vec) const;
  132. /**
  133. * @brief Returns a transpose of the matrix (switched columns and rows).
  134. */
  135. Matrix3 transpose () const;
  136. /**
  137. * @brief Calculates an inverse of the matrix if it exists.
  138. *
  139. * @param [out] mat Resulting matrix inverse.
  140. * @param fTolerance (optional) Tolerance to use when checking
  141. * if determinant is zero (or near zero in this case).
  142. * Zero determinant means inverse doesn't exist.
  143. *
  144. * @return True if inverse exists, false otherwise.
  145. */
  146. bool inverse(Matrix3& mat, float fTolerance = 1e-06f) const;
  147. /**
  148. * @brief Calculates an inverse of the matrix if it exists.
  149. *
  150. * @param fTolerance (optional) Tolerance to use when checking
  151. * if determinant is zero (or near zero in this case).
  152. * Zero determinant means inverse doesn't exist.
  153. *
  154. * @return Resulting matrix inverse if it exists, otherwise a zero matrix.
  155. */
  156. Matrix3 inverse(float fTolerance = 1e-06f) const;
  157. /**
  158. * @brief Calculates the matrix determinant.
  159. */
  160. float determinant() const;
  161. /**
  162. * @brief Decompose a Matrix3 to rotation and scale.
  163. *
  164. * @note Matrix must consist only of rotation and uniform scale transformations,
  165. * otherwise accurate results are not guaranteed. Applying non-uniform scale guarantees
  166. * rotation portion will not be accurate.
  167. */
  168. void decomposition(Quaternion& rotation, Vector3& scale) const;
  169. /**
  170. * @brief Decomposes the matrix into various useful values.
  171. *
  172. * @param [out] matL Unitary matrix. Columns form orthonormal bases. If your matrix is affine and
  173. * doesn't use non-uniform scaling this matrix will be a conjugate transpose of the rotation part of the matrix.
  174. * @param [out] matS Singular values of the matrix. If your matrix is affine these will be scaling factors of the matrix.
  175. * @param [out] matR Unitary matrix. Columns form orthonormal bases. If your matrix is affine and
  176. * doesn't use non-uniform scaling this matrix will be the rotation part of the matrix.
  177. */
  178. void singularValueDecomposition(Matrix3& matL, Vector3& matS, Matrix3& matR) const;
  179. /**
  180. * @brief Decomposes the matrix into a set of values.
  181. *
  182. * @param [out] matQ Columns form orthonormal bases. If your matrix is affine and
  183. * doesn't use non-uniform scaling this matrix will be the rotation part of the matrix.
  184. * @param [out] vecD If the matrix is affine these will be scaling factors of the matrix.
  185. * @param [out] vecU If the matrix is affine these will be shear factors of the matrix.
  186. */
  187. void QDUDecomposition(Matrix3& matQ, Vector3& vecD, Vector3& vecU) const;
  188. /**
  189. * @brief Gram-Schmidt orthonormalization (applied to columns of rotation matrix)
  190. */
  191. void orthonormalize();
  192. /**
  193. * @brief Converts an orthonormal matrix to axis angle representation.
  194. *
  195. * @note Matrix must be orthonormal.
  196. */
  197. void toAxisAngle(Vector3& axis, Radian& angle) const;
  198. /**
  199. * @brief Creates a rotation matrix from an axis angle representation.
  200. */
  201. void fromAxisAngle(const Vector3& axis, const Radian& angle);
  202. /**
  203. * @brief Converts an orthonormal matrix to quaternion representation.
  204. *
  205. * @note Matrix must be orthonormal.
  206. */
  207. void toQuaternion(Quaternion& quat) const;
  208. /**
  209. * @brief Creates a rotation matrix from a quaternion representation.
  210. */
  211. void fromQuaternion(const Quaternion& quat);
  212. /**
  213. * @brief Creates a matrix from a three axes.
  214. */
  215. void fromAxes(const Vector3& xAxis, const Vector3& yAxis, const Vector3& zAxis);
  216. /**
  217. * @brief Converts an orthonormal matrix to euler angle (pitch/yaw/roll) representation.
  218. *
  219. * @param [in,out] xAngle Rotation about x axis. (AKA Pitch)
  220. * @param [in,out] yAngle Rotation about y axis. (AKA Yaw)
  221. * @param [in,out] zAngle Rotation about z axis. (AKA Roll)
  222. *
  223. * @return True if unique solution was found, false otherwise.
  224. *
  225. * @note Matrix must be orthonormal.
  226. */
  227. bool toEulerAngles(Radian& xAngle, Radian& yAngle, Radian& zAngle) const;
  228. /**
  229. * @brief Creates a rotation matrix from the provided Pitch/Yaw/Roll angles.
  230. *
  231. * @param xAngle Rotation about x axis. (AKA Pitch)
  232. * @param yAngle Rotation about y axis. (AKA Yaw)
  233. * @param zAngle Rotation about z axis. (AKA Roll)
  234. *
  235. * @note Matrix must be orthonormal.
  236. * Since different values will be produced depending in which order are the rotations applied, this method assumes
  237. * they are applied in YXZ order. If you need a specific order, use the overloaded "fromEulerAngles" method instead.
  238. */
  239. void fromEulerAngles(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle);
  240. /**
  241. * @brief Creates a rotation matrix from the provided Pitch/Yaw/Roll angles.
  242. *
  243. * @param xAngle Rotation about x axis. (AKA Pitch)
  244. * @param yAngle Rotation about y axis. (AKA Yaw)
  245. * @param zAngle Rotation about z axis. (AKA Roll)
  246. * @param order The order in which rotations will be applied.
  247. * Different rotations can be created depending on the order.
  248. *
  249. * @note Matrix must be orthonormal.
  250. */
  251. void fromEulerAngles(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle, EulerAngleOrder order);
  252. /**
  253. * @brief Eigensolver, matrix must be symmetric.
  254. *
  255. * @note Eigenvectors are vectors which when transformed by the matrix, only change
  256. * in magnitude, but not in direction. Eigenvalue is that magnitude. In other words
  257. * you will get the same result whether you multiply the vector by the matrix or by its
  258. * eigenvalue.
  259. */
  260. void eigenSolveSymmetric(float eigenValues[3], Vector3 eigenVectors[3]) const;
  261. static const float EPSILON;
  262. static const Matrix3 ZERO;
  263. static const Matrix3 IDENTITY;
  264. protected:
  265. friend class Matrix4;
  266. // Support for eigensolver
  267. void tridiagonal (float diag[3], float subDiag[3]);
  268. bool QLAlgorithm (float diag[3], float subDiag[3]);
  269. // Support for singular value decomposition
  270. static const float SVD_EPSILON;
  271. static const unsigned int SVD_MAX_ITERS;
  272. static void bidiagonalize (Matrix3& matA, Matrix3& matL, Matrix3& matR);
  273. static void golubKahanStep (Matrix3& matA, Matrix3& matL, Matrix3& matR);
  274. // Euler angle conversions
  275. static const EulerAngleOrderData EA_LOOKUP[6];
  276. float m[3][3];
  277. };
  278. BS_ALLOW_MEMCPY_SERIALIZATION(Matrix3);
  279. }