BsMath.h 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600
  1. #pragma once
  2. #include "BsPrerequisitesUtil.h"
  3. #include "BsDegree.h"
  4. #include "BsRadian.h"
  5. namespace BansheeEngine
  6. {
  7. /**
  8. * @brief Utility class providing common scalar math operations.
  9. */
  10. class BS_UTILITY_EXPORT Math
  11. {
  12. public:
  13. static Radian acos(float val);
  14. static Radian asin(float val);
  15. static Radian atan(float val) { return Radian(std::atan(val)); }
  16. static Radian atan2(float y, float x) { return Radian(std::atan2(y,x)); }
  17. static float cos(const Radian& val) { return (float)std::cos(val.valueRadians()); }
  18. static float cos(float val) { return (float)std::cos(val); }
  19. static float sin(const Radian& val) { return (float)std::sin(val.valueRadians()); }
  20. static float sin(float val) { return (float)std::sin(val); }
  21. static float tan(const Radian& val) { return (float)std::tan(val.valueRadians()); }
  22. static float tan(float val) { return (float)std::tan(val); }
  23. static float sqrt(float val) { return (float)std::sqrt(val); }
  24. static Radian sqrt(const Radian& val) { return Radian(std::sqrt(val.valueRadians())); }
  25. static Degree sqrt(const Degree& val) { return Degree(std::sqrt(val.valueDegrees())); }
  26. static float invSqrt(float val);
  27. static float sqr(float val) { return val*val; }
  28. static float pow(float base, float exponent) { return (float)std::pow(base, exponent); }
  29. static float exp(float val) { return (float)std::exp(val); }
  30. static float log(float val) { return (float)std::log(val); }
  31. static float log2(float val) { return (float)(std::log(val)/LOG2); }
  32. static float logN(float base, float val) { return (float)(std::log(val)/std::log(base)); }
  33. static float sign(float val);
  34. static Radian sign(const Radian& val) { return Radian(sign(val.valueRadians())); }
  35. static Degree sign(const Degree& val) { return Degree(sign(val.valueDegrees())); }
  36. static float abs(float val) { return float(std::fabs(val)); }
  37. static Degree abs(const Degree& val) { return Degree(std::fabs(val.valueDegrees())); }
  38. static Radian abs(const Radian& val) { return Radian(std::fabs(val.valueRadians())); }
  39. static float ceil(float val) { return (float)std::ceil(val); }
  40. static int ceilToInt(float val) { return (int)std::ceil(val); }
  41. static float round(float val) { return (float)std::floor(val + 0.5f); }
  42. static int roundToInt(float val) { return (int)std::floor(val + 0.5f); }
  43. static float floor(float val) { return (float)std::floor(val); }
  44. static int floorToInt(float val) { return (int)std::floor(val); }
  45. /**
  46. * @brief Clamp a value within an inclusive range.
  47. */
  48. template <typename T>
  49. static T clamp(T val, T minval, T maxval)
  50. {
  51. assert (minval <= maxval && "Invalid clamp range");
  52. return std::max(std::min(val, maxval), minval);
  53. }
  54. /**
  55. * @brief Clamp a value within an inclusive range [0..1].
  56. */
  57. template <typename T>
  58. static T clamp01(T val)
  59. {
  60. return std::max(std::min(val, (T)1), (T)0);
  61. }
  62. /**
  63. * @brief Checks is the specified value a power of two. Only works on integer values.
  64. */
  65. template <typename T>
  66. static bool isPow2(T val)
  67. {
  68. return (val & (val - 1)) == 0;
  69. }
  70. static bool isNaN(float f)
  71. {
  72. return f != f;
  73. }
  74. /**
  75. * @brief Compare 2 floats, using tolerance for inaccuracies.
  76. */
  77. static bool approxEquals(float a, float b, float tolerance = std::numeric_limits<float>::epsilon());
  78. /**
  79. * @brief Compare 2 doubles, using tolerance for inaccuracies.
  80. */
  81. static bool approxEquals(double a, double b, double tolerance = std::numeric_limits<double>::epsilon());
  82. /**
  83. * @brief Calculates the tangent space vector for a given set of positions / texture coords.
  84. */
  85. static Vector3 calculateTriTangent(const Vector3& position1, const Vector3& position2,
  86. const Vector3& position3, float u1, float v1, float u2, float v2, float u3, float v3);
  87. /************************************************************************/
  88. /* TRIG APPROXIMATIONS */
  89. /************************************************************************/
  90. /**
  91. * @brief Sine function approximation.
  92. *
  93. * @param val Angle in range [0, pi/2].
  94. *
  95. * @note Evaluates trigonometric functions using polynomial approximations.
  96. */
  97. static float fastSin0(const Radian& val) { return (float)fastASin0(val.valueRadians()); }
  98. /**
  99. * @brief Sine function approximation.
  100. *
  101. * @param val Angle in range [0, pi/2].
  102. *
  103. * @note Evaluates trigonometric functions using polynomial approximations.
  104. */
  105. static float fastSin0(float val);
  106. /**
  107. * @brief Sine function approximation.
  108. *
  109. * @param val Angle in range [0, pi/2].
  110. *
  111. * @note Evaluates trigonometric functions using polynomial approximations.
  112. * Slightly better (and slower) than "fastSin0".
  113. */
  114. static float fastSin1(const Radian& val) { return (float)fastASin1(val.valueRadians()); }
  115. /**
  116. * @brief Sine function approximation.
  117. *
  118. * @param val Angle in range [0, pi/2].
  119. *
  120. * @note Evaluates trigonometric functions using polynomial approximations.
  121. * Slightly better (and slower) than "fastSin0".
  122. */
  123. static float fastSin1(float val);
  124. /**
  125. * @brief Cosine function approximation.
  126. *
  127. * @param val Angle in range [0, pi/2].
  128. *
  129. * @note Evaluates trigonometric functions using polynomial approximations.
  130. */
  131. static float fastCos0(const Radian& val) { return (float)fastACos0(val.valueRadians()); }
  132. /**
  133. * @brief Cosine function approximation.
  134. *
  135. * @param val Angle in range [0, pi/2].
  136. *
  137. * @note Evaluates trigonometric functions using polynomial approximations.
  138. */
  139. static float fastCos0(float val);
  140. /**
  141. * @brief Cosine function approximation.
  142. *
  143. * @param val Angle in range [0, pi/2].
  144. *
  145. * @note Evaluates trigonometric functions using polynomial approximations.
  146. * Slightly better (and slower) than "fastCos0".
  147. */
  148. static float fastCos1(const Radian& val) { return (float)fastACos1(val.valueRadians()); }
  149. /**
  150. * @brief Cosine function approximation.
  151. *
  152. * @param val Angle in range [0, pi/2].
  153. *
  154. * @note Evaluates trigonometric functions using polynomial approximations.
  155. * Slightly better (and slower) than "fastCos0".
  156. */
  157. static float fastCos1(float val);
  158. /**
  159. * @brief Tangent function approximation.
  160. *
  161. * @param val Angle in range [0, pi/4].
  162. *
  163. * @note Evaluates trigonometric functions using polynomial approximations.
  164. */
  165. static float fastTan0(const Radian& val) { return (float)fastATan0(val.valueRadians()); }
  166. /**
  167. * @brief Tangent function approximation.
  168. *
  169. * @param val Angle in range [0, pi/4].
  170. *
  171. * @note Evaluates trigonometric functions using polynomial approximations.
  172. */
  173. static float fastTan0(float val);
  174. /**
  175. * @brief Tangent function approximation.
  176. *
  177. * @param val Angle in range [0, pi/4].
  178. *
  179. * @note Evaluates trigonometric functions using polynomial approximations.
  180. * Slightly better (and slower) than "fastTan0".
  181. */
  182. static float fastTan1(const Radian& val) { return (float)fastATan1(val.valueRadians()); }
  183. /**
  184. * @brief Tangent function approximation.
  185. *
  186. * @param val Angle in range [0, pi/4].
  187. *
  188. * @note Evaluates trigonometric functions using polynomial approximations.
  189. * Slightly better (and slower) than "fastTan0".
  190. */
  191. static float fastTan1(float val);
  192. /**
  193. * @brief Inverse sine function approximation.
  194. *
  195. * @param val Angle in range [0, 1].
  196. *
  197. * @note Evaluates trigonometric functions using polynomial approximations.
  198. */
  199. static float fastASin0(const Radian& val) { return (float)fastASin0(val.valueRadians()); }
  200. /**
  201. * @brief Inverse sine function approximation.
  202. *
  203. * @param val Angle in range [0, 1].
  204. *
  205. * @note Evaluates trigonometric functions using polynomial approximations.
  206. */
  207. static float fastASin0(float val);
  208. /**
  209. * @brief Inverse sine function approximation.
  210. *
  211. * @param val Angle in range [0, 1].
  212. *
  213. * @note Evaluates trigonometric functions using polynomial approximations.
  214. * Slightly better (and slower) than "fastASin0".
  215. */
  216. static float fastASin1(const Radian& val) { return (float)fastASin1(val.valueRadians()); }
  217. /**
  218. * @brief Inverse sine function approximation.
  219. *
  220. * @param val Angle in range [0, 1].
  221. *
  222. * @note Evaluates trigonometric functions using polynomial approximations.
  223. * Slightly better (and slower) than "fastASin0".
  224. */
  225. static float fastASin1(float val);
  226. /**
  227. * @brief Inverse cosine function approximation.
  228. *
  229. * @param val Angle in range [0, 1].
  230. *
  231. * @note Evaluates trigonometric functions using polynomial approximations.
  232. */
  233. static float fastACos0(const Radian& val) { return (float)fastACos0(val.valueRadians()); }
  234. /**
  235. * @brief Inverse cosine function approximation.
  236. *
  237. * @param val Angle in range [0, 1].
  238. *
  239. * @note Evaluates trigonometric functions using polynomial approximations.
  240. */
  241. static float fastACos0(float val);
  242. /**
  243. * @brief Inverse cosine function approximation.
  244. *
  245. * @param val Angle in range [0, 1].
  246. *
  247. * @note Evaluates trigonometric functions using polynomial approximations.
  248. * Slightly better (and slower) than "fastACos0".
  249. */
  250. static float fastACos1(const Radian& val) { return (float)fastACos1(val.valueRadians()); }
  251. /**
  252. * @brief Inverse cosine function approximation.
  253. *
  254. * @param val Angle in range [0, 1].
  255. *
  256. * @note Evaluates trigonometric functions using polynomial approximations.
  257. * Slightly better (and slower) than "fastACos0".
  258. */
  259. static float fastACos1(float val);
  260. /**
  261. * @brief Inverse tangent function approximation.
  262. *
  263. * @param val Angle in range [-1, 1].
  264. *
  265. * @note Evaluates trigonometric functions using polynomial approximations.
  266. */
  267. static float fastATan0(const Radian& val) { return (float)fastATan0(val.valueRadians()); }
  268. /**
  269. * @brief Inverse tangent function approximation.
  270. *
  271. * @param val Angle in range [-1, 1].
  272. *
  273. * @note Evaluates trigonometric functions using polynomial approximations.
  274. */
  275. static float fastATan0(float val);
  276. /**
  277. * @brief Inverse tangent function approximation.
  278. *
  279. * @param val Angle in range [-1, 1].
  280. *
  281. * @note Evaluates trigonometric functions using polynomial approximations.
  282. * Slightly better (and slower) than "fastATan0".
  283. */
  284. static float fastATan1(const Radian& val) { return (float)fastATan1(val.valueRadians()); }
  285. /**
  286. * @brief Inverse tangent function approximation.
  287. *
  288. * @param val Angle in range [-1, 1].
  289. *
  290. * @note Evaluates trigonometric functions using polynomial approximations.
  291. * Slightly better (and slower) than "fastATan0".
  292. */
  293. static float fastATan1(float val);
  294. /**
  295. * @brief Interpolates between min and max. Returned value is in
  296. * [0, 1] range where min = 0, max = 1 and 0.5 is the average
  297. * of min and max.
  298. */
  299. template <typename T>
  300. static float lerp01(T val, T min, T max)
  301. {
  302. return clamp01((val - min) / std::max(max - min, 0.0001F));
  303. }
  304. /**
  305. * @brief Solves the linear equation with the parameters A, B.
  306. * Returns number of roots found and the roots themselves will
  307. * be output in the "roots" array.
  308. *
  309. * @param roots Must be at least size of 1.
  310. *
  311. * @note Only returns real roots.
  312. */
  313. template <typename T>
  314. static UINT32 solveLinear(T A, T B, T* roots)
  315. {
  316. if (!approxEquals(B, (T)0))
  317. {
  318. roots[0] = -A / B;
  319. return 1;
  320. }
  321. else if (approxEquals(A, (T)0))
  322. {
  323. roots[0] = 0.0f;
  324. return 1;
  325. }
  326. return 0;
  327. }
  328. /**
  329. * @brief Solves the quadratic equation with the parameters A, B, C.
  330. * Returns number of roots found and the roots themselves will
  331. * be output in the "roots" array.
  332. *
  333. * @param roots Must be at least size of 2.
  334. *
  335. * @note Only returns real roots.
  336. */
  337. template <typename T>
  338. static UINT32 solveQuadratic(T A, T B, T C, T* roots)
  339. {
  340. if (!approxEquals(C, (T)0))
  341. {
  342. T discr = B * B - 4 * A * C;
  343. if (discr > std::numeric_limits<T>::epsilon())
  344. {
  345. float temp = ((T)0.5) / C;
  346. discr = std::sqrt(discr);
  347. roots[0] = temp * (-B - discr);
  348. roots[1] = temp * (-B + discr);
  349. return 2;
  350. }
  351. else if (discr < -std::numeric_limits<T>::epsilon())
  352. {
  353. return 0;
  354. }
  355. else
  356. {
  357. roots[0] = ((T)-0.5) * (B / C);
  358. return 1;
  359. }
  360. }
  361. else
  362. {
  363. return solveLinear(A, B, roots);
  364. }
  365. }
  366. /**
  367. * @brief Solves the cubic equation with the parameters A, B, C, D.
  368. * Returns number of roots found and the roots themselves will
  369. * be output in the "roots" array.
  370. *
  371. * @param roots Must be at least size of 3.
  372. *
  373. * @note Only returns real roots.
  374. */
  375. template <typename T>
  376. static UINT32 solveCubic(T A, T B, T C, T D, T* roots)
  377. {
  378. static const T THIRD = (1 / (T)3);
  379. if (!approxEquals(D, (T)0))
  380. {
  381. T invD = 1 / D;
  382. T k0 = A * invD;
  383. T k1 = B * invD;
  384. T k2 = C * invD;
  385. T offset = THIRD * k2;
  386. T a = k1 - k2 * offset;
  387. T b = k0 + k2 * (2 * k2 * k2 - 9 * k1) * (1 / (T)27);
  388. T halfB = ((T)0.5) * b;
  389. T discr = halfB * halfB + a * a * a * (1 / (T)27);
  390. if (discr > std::numeric_limits<T>::epsilon())
  391. {
  392. discr = std::sqrt(discr);
  393. T temp = -halfB + discr;
  394. if (temp >= (T)0)
  395. roots[0] = pow(temp, THIRD);
  396. else
  397. roots[0] = -pow(-temp, THIRD);
  398. temp = -halfB - discr;
  399. if (temp >= 0)
  400. roots[0] += pow(temp, THIRD);
  401. else
  402. roots[0] -= -pow(-temp, THIRD);
  403. roots[0] -= offset;
  404. return 1;
  405. }
  406. else if (discr < -std::numeric_limits<T>::epsilon())
  407. {
  408. T sqrtThree = std::sqrt((T)3);
  409. T dist = sqrt(-THIRD * a);
  410. T angle = THIRD * atan2(std::sqrt(-discr), -halfB).valueRadians();
  411. T angleCos = cos(angle);
  412. T angleSin = sin(angle);
  413. roots[0] = 2 * dist * angleCos - offset;
  414. roots[1] = -dist * (angleCos + sqrtThree * angleSin) - offset;
  415. roots[2] = -dist * (angleCos - sqrtThree * angleSin) - offset;
  416. return 3;
  417. }
  418. else
  419. {
  420. T temp;
  421. if (halfB >= (T)0)
  422. temp = -pow(halfB, THIRD);
  423. else
  424. temp = pow(-halfB, THIRD);
  425. roots[0] = 2 * temp - offset;
  426. roots[1] = -temp - offset;
  427. roots[2] = roots[1];
  428. return 3;
  429. }
  430. }
  431. else
  432. {
  433. return solveQuadratic(A, B, C, roots);
  434. }
  435. }
  436. /**
  437. * @brief Solves the quartic equation with the parameters A, B, C, D, E.
  438. * Returns number of roots found and the roots themselves will
  439. * be output in the "roots" array.
  440. *
  441. * @param roots Must be at least size of 4.
  442. *
  443. * @note Only returns real roots.
  444. */
  445. template <typename T>
  446. static UINT32 solveQuartic(T A, T B, T C, T D, T E, T* roots)
  447. {
  448. if (!approxEquals(E, (T)0))
  449. {
  450. T invE = 1 / E;
  451. T k0 = A * invE;
  452. T k1 = B * invE;
  453. T k2 = C * invE;
  454. T k3 = D * invE;
  455. T r0 = k0 * (4 * k2 - k3 * k3) - k1 * k1;
  456. T r1 = k3 * k1 - 4 * k0;
  457. T r2 = -k2;
  458. solveCubic(r0, r1, r2, (T)1, roots);
  459. T y = roots[0];
  460. UINT32 numRoots = 0;
  461. T discr = ((T)0.25) * k3 * k3 - k2 + y;
  462. if (discr > std::numeric_limits<T>::epsilon())
  463. {
  464. T r = sqrt(discr);
  465. T t1 = ((T)0.75) * k3 * k3 - r * r - 2*k2;
  466. T t2 = (k3 * k2 - 2 * k1 - ((T)0.25) * k3 * k3 * k3) / r;
  467. T tPlus = t1 + t2;
  468. if (tPlus >= ((T)0))
  469. {
  470. T d = std::sqrt(tPlus);
  471. roots[0] = ((T)-0.25) * k3 + ((T)0.5) * (r + d);
  472. roots[1] = ((T)-0.25) * k3 + ((T)0.5) * (r - d);
  473. numRoots += 2;
  474. }
  475. T tMinus = t1 - t2;
  476. if (tMinus >= ((T)0))
  477. {
  478. T e = std::sqrt(tMinus);
  479. roots[numRoots++] = ((T)-0.25) * k3 + ((T)0.5) * (e - r);
  480. roots[numRoots++] = ((T)-0.25) * k3 - ((T)0.5) * (e + r);
  481. }
  482. }
  483. else if (discr < -std::numeric_limits<T>::epsilon())
  484. {
  485. numRoots = 0;
  486. }
  487. else
  488. {
  489. T t2 = y * y - 4 * k0;
  490. if (t2 >= ((T)0))
  491. {
  492. t2 = 2 * std::sqrt(t2);
  493. T t1 = ((T)0.75) * k3 * k3 - 2 * k2;
  494. T tPlus = t1 + t2;
  495. if (tPlus >= ((T)0))
  496. {
  497. T d = std::sqrt(tPlus);
  498. roots[0] = ((T)-0.25) * k3 + ((T)0.5) * d;
  499. roots[1] = ((T)-0.25) * k3 + ((T)0.5) * d;
  500. numRoots += 2;
  501. }
  502. T tMinus = t1 - t2;
  503. if (tMinus >= ((T)0))
  504. {
  505. T e = std::sqrt(tMinus);
  506. roots[numRoots++] = ((T)-0.25) * k3 + ((T)0.5) * e;
  507. roots[numRoots++] = ((T)-0.25) * k3 - ((T)0.5) * e;
  508. }
  509. }
  510. }
  511. return numRoots;
  512. }
  513. else
  514. {
  515. return solveCubic(A, B, C, D, roots);
  516. }
  517. }
  518. static const float POS_INFINITY;
  519. static const float NEG_INFINITY;
  520. static const float PI;
  521. static const float TWO_PI;
  522. static const float HALF_PI;
  523. static const float DEG2RAD;
  524. static const float RAD2DEG;
  525. static const float LOG2;
  526. };
  527. }