BsBitwise.h 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276
  1. #pragma once
  2. #include "BsPrerequisitesUtil.h"
  3. namespace BansheeEngine
  4. {
  5. /** @addtogroup General
  6. * @{
  7. */
  8. /** Class for manipulating bit patterns. */
  9. class Bitwise
  10. {
  11. public:
  12. /** Returns the most significant bit set in a value. */
  13. static FORCEINLINE unsigned int mostSignificantBitSet(unsigned int value)
  14. {
  15. unsigned int result = 0;
  16. while (value != 0) {
  17. ++result;
  18. value >>= 1;
  19. }
  20. return result-1;
  21. }
  22. /** Returns the closest power-of-two number greater or equal to value. */
  23. static FORCEINLINE UINT32 firstPO2From(UINT32 n)
  24. {
  25. --n;
  26. n |= n >> 16;
  27. n |= n >> 8;
  28. n |= n >> 4;
  29. n |= n >> 2;
  30. n |= n >> 1;
  31. ++n;
  32. return n;
  33. }
  34. /** Determines whether the number is power-of-two or not. */
  35. template<typename T>
  36. static FORCEINLINE bool isPO2(T n)
  37. {
  38. return (n & (n-1)) == 0;
  39. }
  40. /** Returns the number of bits a pattern must be shifted right by to remove right-hand zeros. */
  41. template<typename T>
  42. static FORCEINLINE unsigned int getBitShift(T mask)
  43. {
  44. if (mask == 0)
  45. return 0;
  46. unsigned int result = 0;
  47. while ((mask & 1) == 0) {
  48. ++result;
  49. mask >>= 1;
  50. }
  51. return result;
  52. }
  53. /** Takes a value with a given src bit mask, and produces another value with a desired bit mask. */
  54. template<typename SrcT, typename DestT>
  55. static inline DestT convertBitPattern(SrcT srcValue, SrcT srcBitMask, DestT destBitMask)
  56. {
  57. // Mask off irrelevant source value bits (if any)
  58. srcValue = srcValue & srcBitMask;
  59. // Shift source down to bottom of DWORD
  60. const unsigned int srcBitShift = getBitShift(srcBitMask);
  61. srcValue >>= srcBitShift;
  62. // Get max value possible in source from srcMask
  63. const SrcT srcMax = srcBitMask >> srcBitShift;
  64. // Get max available in dest
  65. const unsigned int destBitShift = getBitShift(destBitMask);
  66. const DestT destMax = destBitMask >> destBitShift;
  67. // Scale source value into destination, and shift back
  68. DestT destValue = (srcValue * destMax) / srcMax;
  69. return (destValue << destBitShift);
  70. }
  71. /**
  72. * Convert N bit colour channel value to P bits. It fills P bits with the bit pattern repeated.
  73. * (this is /((1<<n)-1) in fixed point).
  74. */
  75. static inline unsigned int fixedToFixed(UINT32 value, unsigned int n, unsigned int p)
  76. {
  77. if(n > p)
  78. {
  79. // Less bits required than available; this is easy
  80. value >>= n-p;
  81. }
  82. else if(n < p)
  83. {
  84. // More bits required than are there, do the fill
  85. // Use old fashioned division, probably better than a loop
  86. if(value == 0)
  87. value = 0;
  88. else if(value == (static_cast<unsigned int>(1)<<n)-1)
  89. value = (1<<p)-1;
  90. else value = value*(1<<p)/((1<<n)-1);
  91. }
  92. return value;
  93. }
  94. /**
  95. * Convert floating point color channel value between 0.0 and 1.0 (otherwise clamped) to integer of a certain
  96. * number of bits. Works for any value of bits between 0 and 31.
  97. */
  98. static unsigned int floatToFixed(const float value, const unsigned int bits)
  99. {
  100. if(value <= 0.0f) return 0;
  101. else if (value >= 1.0f) return (1<<bits)-1;
  102. else return (unsigned int)(value * (1<<bits));
  103. }
  104. /** Fixed point to float. */
  105. static float fixedToFloat(unsigned value, unsigned int bits)
  106. {
  107. return (float)value/(float)((1<<bits)-1);
  108. }
  109. /** Write a n*8 bits integer value to memory in native endian. */
  110. static void intWrite(void *dest, const int n, const unsigned int value)
  111. {
  112. switch(n) {
  113. case 1:
  114. ((UINT8*)dest)[0] = (UINT8)value;
  115. break;
  116. case 2:
  117. ((UINT16*)dest)[0] = (UINT16)value;
  118. break;
  119. case 3:
  120. #if BS_ENDIAN == BS_ENDIAN_BIG
  121. ((UINT8*)dest)[0] = (UINT8)((value >> 16) & 0xFF);
  122. ((UINT8*)dest)[1] = (UINT8)((value >> 8) & 0xFF);
  123. ((UINT8*)dest)[2] = (UINT8)(value & 0xFF);
  124. #else
  125. ((UINT8*)dest)[2] = (UINT8)((value >> 16) & 0xFF);
  126. ((UINT8*)dest)[1] = (UINT8)((value >> 8) & 0xFF);
  127. ((UINT8*)dest)[0] = (UINT8)(value & 0xFF);
  128. #endif
  129. break;
  130. case 4:
  131. ((UINT32*)dest)[0] = (UINT32)value;
  132. break;
  133. }
  134. }
  135. /** Read a n*8 bits integer value to memory in native endian. */
  136. static unsigned int intRead(const void *src, int n) {
  137. switch(n) {
  138. case 1:
  139. return ((UINT8*)src)[0];
  140. case 2:
  141. return ((UINT16*)src)[0];
  142. case 3:
  143. #if BS_ENDIAN == BS_ENDIAN_BIG
  144. return ((UINT32)((UINT8*)src)[0]<<16)|
  145. ((UINT32)((UINT8*)src)[1]<<8)|
  146. ((UINT32)((UINT8*)src)[2]);
  147. #else
  148. return ((UINT32)((UINT8*)src)[0])|
  149. ((UINT32)((UINT8*)src)[1]<<8)|
  150. ((UINT32)((UINT8*)src)[2]<<16);
  151. #endif
  152. case 4:
  153. return ((UINT32*)src)[0];
  154. }
  155. return 0; // ?
  156. }
  157. /** Convert a float32 to a float16 (NV_half_float). */
  158. static UINT16 floatToHalf(float i)
  159. {
  160. union { float f; UINT32 i; } v;
  161. v.f = i;
  162. return floatToHalfI(v.i);
  163. }
  164. /** Converts float in UINT32 format to a a half in UINT16 format. */
  165. static UINT16 floatToHalfI(UINT32 i)
  166. {
  167. register int s = (i >> 16) & 0x00008000;
  168. register int e = ((i >> 23) & 0x000000ff) - (127 - 15);
  169. register int m = i & 0x007fffff;
  170. if (e <= 0)
  171. {
  172. if (e < -10)
  173. {
  174. return 0;
  175. }
  176. m = (m | 0x00800000) >> (1 - e);
  177. return static_cast<UINT16>(s | (m >> 13));
  178. }
  179. else if (e == 0xff - (127 - 15))
  180. {
  181. if (m == 0) // Inf
  182. {
  183. return static_cast<UINT16>(s | 0x7c00);
  184. }
  185. else // NAN
  186. {
  187. m >>= 13;
  188. return static_cast<UINT16>(s | 0x7c00 | m | (m == 0));
  189. }
  190. }
  191. else
  192. {
  193. if (e > 30) // Overflow
  194. {
  195. return static_cast<UINT16>(s | 0x7c00);
  196. }
  197. return static_cast<UINT16>(s | (e << 10) | (m >> 13));
  198. }
  199. }
  200. /** Convert a float16 (NV_half_float) to a float32. */
  201. static float halfToFloat(UINT16 y)
  202. {
  203. union { float f; UINT32 i; } v;
  204. v.i = halfToFloatI(y);
  205. return v.f;
  206. }
  207. /** Converts a half in UINT16 format to a float in UINT32 format. */
  208. static UINT32 halfToFloatI(UINT16 y)
  209. {
  210. register int s = (y >> 15) & 0x00000001;
  211. register int e = (y >> 10) & 0x0000001f;
  212. register int m = y & 0x000003ff;
  213. if (e == 0)
  214. {
  215. if (m == 0) // Plus or minus zero
  216. {
  217. return s << 31;
  218. }
  219. else // Denormalized number -- renormalize it
  220. {
  221. while (!(m & 0x00000400))
  222. {
  223. m <<= 1;
  224. e -= 1;
  225. }
  226. e += 1;
  227. m &= ~0x00000400;
  228. }
  229. }
  230. else if (e == 31)
  231. {
  232. if (m == 0) // Inf
  233. {
  234. return (s << 31) | 0x7f800000;
  235. }
  236. else // NaN
  237. {
  238. return (s << 31) | 0x7f800000 | (m << 13);
  239. }
  240. }
  241. e = e + (127 - 15);
  242. m = m << 13;
  243. return (s << 31) | (e << 23) | m;
  244. }
  245. };
  246. /** @} */
  247. }