| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372 |
- #pragma once
- #include "BsPrerequisitesUtil.h"
- #include "BsMath.h"
- namespace BansheeEngine
- {
- /** @addtogroup Math
- * @{
- */
- /** A two dimensional vector. */
- class BS_UTILITY_EXPORT Vector2
- {
- public:
- float x, y;
- public:
- Vector2()
- :x(0.0f), y(0.0f)
- { }
- Vector2(float x, float y)
- :x(x), y(y)
- { }
- /** Exchange the contents of this vector with another. */
- void swap(Vector2& other)
- {
- std::swap(x, other.x);
- std::swap(y, other.y);
- }
- float operator[] (UINT32 i) const
- {
- assert(i < 2);
- return *(&x+i);
- }
- float& operator[] (UINT32 i)
- {
- assert(i < 2);
- return *(&x+i);
- }
-
- /** Pointer accessor for direct copying. */
- float* ptr()
- {
- return &x;
- }
- /** Pointer accessor for direct copying. */
- const float* ptr() const
- {
- return &x;
- }
- Vector2& operator= (const Vector2& rhs)
- {
- x = rhs.x;
- y = rhs.y;
- return *this;
- }
- Vector2& operator= (float rhs)
- {
- x = rhs;
- y = rhs;
- return *this;
- }
- bool operator== (const Vector2& rhs) const
- {
- return (x == rhs.x && y == rhs.y);
- }
- bool operator!= (const Vector2& rhs) const
- {
- return (x != rhs.x || y != rhs.y);
- }
- Vector2 operator+ (const Vector2& rhs) const
- {
- return Vector2(x + rhs.x, y + rhs.y);
- }
- Vector2 operator- (const Vector2& rhs) const
- {
- return Vector2(x - rhs.x, y - rhs.y);
- }
- Vector2 operator* (const float rhs) const
- {
- return Vector2(x * rhs, y * rhs);
- }
- Vector2 operator* (const Vector2& rhs) const
- {
- return Vector2(x * rhs.x, y * rhs.y);
- }
- Vector2 operator/ (const float rhs) const
- {
- assert(rhs != 0.0);
- float fInv = 1.0f / rhs;
- return Vector2(x * fInv, y * fInv);
- }
- Vector2 operator/ (const Vector2& rhs) const
- {
- return Vector2(x / rhs.x, y / rhs.y);
- }
- const Vector2& operator+ () const
- {
- return *this;
- }
- Vector2 operator- () const
- {
- return Vector2(-x, -y);
- }
- friend Vector2 operator* (float lhs, const Vector2& rhs)
- {
- return Vector2(lhs * rhs.x, lhs * rhs.y);
- }
- friend Vector2 operator/ (float lhs, const Vector2& rhs)
- {
- return Vector2(lhs / rhs.x, lhs / rhs.y);
- }
- friend Vector2 operator+ (Vector2& lhs, float rhs)
- {
- return Vector2(lhs.x + rhs, lhs.y + rhs);
- }
- friend Vector2 operator+ (float lhs, const Vector2& rhs)
- {
- return Vector2(lhs + rhs.x, lhs + rhs.y);
- }
- friend Vector2 operator- (const Vector2& lhs, float rhs)
- {
- return Vector2(lhs.x - rhs, lhs.y - rhs);
- }
- friend Vector2 operator- (const float lhs, const Vector2& rhs)
- {
- return Vector2(lhs - rhs.x, lhs - rhs.y);
- }
- Vector2& operator+= (const Vector2& rhs)
- {
- x += rhs.x;
- y += rhs.y;
- return *this;
- }
- Vector2& operator+= (float rhs)
- {
- x += rhs;
- y += rhs;
- return *this;
- }
- Vector2& operator-= (const Vector2& rhs)
- {
- x -= rhs.x;
- y -= rhs.y;
- return *this;
- }
- Vector2& operator-= (float rhs)
- {
- x -= rhs;
- y -= rhs;
- return *this;
- }
- Vector2& operator*= (float rhs)
- {
- x *= rhs;
- y *= rhs;
- return *this;
- }
- Vector2& operator*= (const Vector2& rhs)
- {
- x *= rhs.x;
- y *= rhs.y;
- return *this;
- }
- Vector2& operator/= (float rhs)
- {
- assert(rhs != 0.0f);
- float inv = 1.0f / rhs;
- x *= inv;
- y *= inv;
- return *this;
- }
- Vector2& operator/= (const Vector2& rhs)
- {
- x /= rhs.x;
- y /= rhs.y;
- return *this;
- }
- /** Returns the length (magnitude) of the vector. */
- float length() const
- {
- return Math::sqrt(x * x + y * y);
- }
- /** Returns the square of the length(magnitude) of the vector. */
- float squaredLength() const
- {
- return x * x + y * y;
- }
- /** Returns the distance to another vector. */
- float distance(const Vector2& rhs) const
- {
- return (*this - rhs).length();
- }
- /** Returns the square of the distance to another vector. */
- float sqrdDistance(const Vector2& rhs) const
- {
- return (*this - rhs).squaredLength();
- }
- /** Calculates the dot (scalar) product of this vector with another. */
- float dot(const Vector2& vec) const
- {
- return x * vec.x + y * vec.y;
- }
- /** Normalizes the vector. */
- float normalize()
- {
- float len = Math::sqrt(x * x + y * y);
- // Will also work for zero-sized vectors, but will change nothing
- if (len > 1e-08)
- {
- float invLen = 1.0f / len;
- x *= invLen;
- y *= invLen;
- }
- return len;
- }
- /** Generates a vector perpendicular to this vector. */
- Vector2 perpendicular() const
- {
- return Vector2 (-y, x);
- }
- /**
- * Calculates the 2 dimensional cross-product of 2 vectors, which results in a single floating point value which
- * is 2 times the area of the triangle.
- */
- float cross(const Vector2& other) const
- {
- return x * other.y - y * other.x;
- }
- /** Sets this vector's components to the minimum of its own and the ones of the passed in vector. */
- void floor(const Vector2& cmp)
- {
- if(cmp.x < x) x = cmp.x;
- if(cmp.y < y) y = cmp.y;
- }
- /** Sets this vector's components to the maximum of its own and the ones of the passed in vector. */
- void ceil(const Vector2& cmp)
- {
- if(cmp.x > x) x = cmp.x;
- if(cmp.y > y) y = cmp.y;
- }
- /** Returns true if this vector is zero length. */
- bool isZeroLength() const
- {
- float sqlen = (x * x) + (y * y);
- return (sqlen < (1e-06 * 1e-06));
- }
- /** Calculates a reflection vector to the plane with the given normal. */
- Vector2 reflect(const Vector2& normal) const
- {
- return Vector2(*this - (2 * this->dot(normal) * normal));
- }
- /** Performs Gram-Schmidt orthonormalization. */
- static void orthonormalize(Vector2& u, Vector2& v)
- {
- u.normalize();
- float dot = u.dot(v);
- v -= u*dot;
- v.normalize();
- }
- /** Normalizes the provided vector and returns a new normalized instance. */
- static Vector2 normalize(const Vector2& val)
- {
- float len = Math::sqrt(val.x * val.x + val.y * val.y);
- // Will also work for zero-sized vectors, but will change nothing
- Vector2 normalizedVec;
- if (len > 1e-08)
- {
- float invLen = 1.0f / len;
- normalizedVec.x *= invLen;
- normalizedVec.y *= invLen;
- }
- return normalizedVec;
- }
- /** Checks are any of the vector components NaN. */
- bool isNaN() const
- {
- return Math::isNaN(x) || Math::isNaN(y);
- }
- /** Returns the minimum of all the vector components as a new vector. */
- static Vector2 min(const Vector2& a, const Vector2& b)
- {
- return Vector2(std::min(a.x, b.x), std::min(a.y, b.y));
- }
- /** Returns the maximum of all the vector components as a new vector. */
- static Vector2 max(const Vector2& a, const Vector2& b)
- {
- return Vector2(std::max(a.x, b.x), std::max(a.y, b.y));
- }
- static const Vector2 ZERO;
- static const Vector2 ONE;
- static const Vector2 UNIT_X;
- static const Vector2 UNIT_Y;
- };
- /** @} */
- /** @cond SPECIALIZATIONS */
- BS_ALLOW_MEMCPY_SERIALIZATION(Vector2);
- /** @endcond */
- }
|