BsRenderBeast.cpp 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031
  1. #include "BsRenderBeast.h"
  2. #include "BsCCamera.h"
  3. #include "BsCRenderable.h"
  4. #include "BsMaterial.h"
  5. #include "BsMesh.h"
  6. #include "BsPass.h"
  7. #include "BsBlendState.h"
  8. #include "BsRasterizerState.h"
  9. #include "BsDepthStencilState.h"
  10. #include "BsSamplerState.h"
  11. #include "BsCoreApplication.h"
  12. #include "BsViewport.h"
  13. #include "BsRenderTarget.h"
  14. #include "BsRenderQueue.h"
  15. #include "BsCoreThread.h"
  16. #include "BsGpuParams.h"
  17. #include "BsProfilerCPU.h"
  18. #include "BsShader.h"
  19. #include "BsGpuParamBlockBuffer.h"
  20. #include "BsStaticRenderableHandler.h"
  21. #include "BsTime.h"
  22. #include "BsRenderableElement.h"
  23. #include "BsCoreObjectManager.h"
  24. #include "BsRenderBeastOptions.h"
  25. #include "BsSamplerOverrides.h"
  26. #include "BsLight.h"
  27. #include "BsRenderTexturePool.h"
  28. #include "BsRenderTargets.h"
  29. #include "BsRendererUtility.h"
  30. #include "BsRenderStateManager.h"
  31. using namespace std::placeholders;
  32. namespace BansheeEngine
  33. {
  34. RenderBeast::RenderBeast()
  35. :mOptions(bs_shared_ptr_new<RenderBeastOptions>()), mOptionsDirty(true), mStaticHandler(nullptr),
  36. mDefaultMaterial(nullptr), mPointLightMat(nullptr), mDirLightMat(nullptr)
  37. {
  38. }
  39. const StringID& RenderBeast::getName() const
  40. {
  41. static StringID name = "RenderBeast";
  42. return name;
  43. }
  44. void RenderBeast::initialize()
  45. {
  46. CoreRenderer::initialize();
  47. CoreThread::instance().queueCommand(std::bind(&RenderBeast::initializeCore, this));
  48. }
  49. void RenderBeast::destroy()
  50. {
  51. CoreRenderer::destroy();
  52. gCoreAccessor().queueCommand(std::bind(&RenderBeast::destroyCore, this));
  53. gCoreAccessor().submitToCoreThread(true);
  54. }
  55. void RenderBeast::initializeCore()
  56. {
  57. RendererUtility::startUp();
  58. mCoreOptions = bs_shared_ptr_new<RenderBeastOptions>();
  59. mStaticHandler = bs_new<StaticRenderableHandler>();
  60. mDefaultMaterial = bs_new<DefaultMaterial>();
  61. mPointLightMat = bs_new<PointLightMat>();
  62. mDirLightMat = bs_new<DirectionalLightMat>();
  63. // TODO - Replace these manually assigned states with two different versions of point light shader once I implement
  64. // a preprocessor parser for BSL
  65. DEPTH_STENCIL_STATE_DESC inGeomDSDesc;
  66. inGeomDSDesc.depthWriteEnable = false;
  67. inGeomDSDesc.depthReadEnable = false;
  68. mPointLightInGeomDSState = RenderStateCoreManager::instance().createDepthStencilState(inGeomDSDesc);
  69. DEPTH_STENCIL_STATE_DESC outGeomDSDesc;
  70. outGeomDSDesc.depthWriteEnable = false;
  71. mPointLightOutGeomDSState = RenderStateCoreManager::instance().createDepthStencilState(outGeomDSDesc);
  72. RASTERIZER_STATE_DESC inGeomRDesc;
  73. inGeomRDesc.cullMode = CULL_CLOCKWISE;
  74. mPointLightInGeomRState = RenderStateCoreManager::instance().createRasterizerState(inGeomRDesc);
  75. RASTERIZER_STATE_DESC outGeomRDesc;
  76. outGeomRDesc.cullMode = CULL_COUNTERCLOCKWISE;
  77. mPointLightOutGeomRState = RenderStateCoreManager::instance().createRasterizerState(outGeomRDesc);
  78. RenderTexturePool::startUp();
  79. }
  80. void RenderBeast::destroyCore()
  81. {
  82. if (mStaticHandler != nullptr)
  83. bs_delete(mStaticHandler);
  84. mRenderTargets.clear();
  85. mCameraData.clear();
  86. mRenderables.clear();
  87. RenderTexturePool::shutDown();
  88. bs_delete(mDefaultMaterial);
  89. bs_delete(mPointLightMat);
  90. bs_delete(mDirLightMat);
  91. mPointLightInGeomDSState = nullptr;
  92. mPointLightOutGeomDSState = nullptr;
  93. mPointLightInGeomRState = nullptr;
  94. mPointLightOutGeomRState = nullptr;
  95. RendererUtility::shutDown();
  96. assert(mSamplerOverrides.empty());
  97. }
  98. void RenderBeast::_notifyRenderableAdded(RenderableCore* renderable)
  99. {
  100. UINT32 renderableId = (UINT32)mRenderables.size();
  101. renderable->setRendererId(renderableId);
  102. mRenderables.push_back(RenderableData());
  103. mRenderableShaderData.push_back(RenderableShaderData());
  104. mWorldBounds.push_back(renderable->getBounds());
  105. RenderableData& renderableData = mRenderables.back();
  106. renderableData.renderable = renderable;
  107. RenderableShaderData& shaderData = mRenderableShaderData.back();
  108. shaderData.worldTransform = renderable->getTransform();
  109. shaderData.invWorldTransform = shaderData.worldTransform.inverseAffine();
  110. shaderData.worldNoScaleTransform = renderable->getTransformNoScale();
  111. shaderData.invWorldNoScaleTransform = shaderData.worldNoScaleTransform.inverseAffine();
  112. shaderData.worldDeterminantSign = shaderData.worldTransform.determinant3x3() >= 0.0f ? 1.0f : -1.0f;
  113. if (renderable->getRenderableType() == RenType_LitTextured)
  114. renderableData.controller = mStaticHandler;
  115. else
  116. renderableData.controller = nullptr;
  117. SPtr<MeshCore> mesh = renderable->getMesh();
  118. if (mesh != nullptr)
  119. {
  120. const MeshProperties& meshProps = mesh->getProperties();
  121. SPtr<VertexDeclarationCore> vertexDecl = mesh->getVertexData()->vertexDeclaration;
  122. for (UINT32 i = 0; i < meshProps.getNumSubMeshes(); i++)
  123. {
  124. renderableData.elements.push_back(BeastRenderableElement());
  125. BeastRenderableElement& renElement = renderableData.elements.back();
  126. renElement.mesh = mesh;
  127. renElement.subMesh = meshProps.getSubMesh(i);
  128. renElement.renderableId = renderableId;
  129. renElement.material = renderable->getMaterial(i);
  130. if (renElement.material == nullptr)
  131. renElement.material = renderable->getMaterial(0);
  132. if (renElement.material != nullptr && renElement.material->getShader() == nullptr)
  133. renElement.material = nullptr;
  134. // Validate mesh <-> shader vertex bindings
  135. if (renElement.material != nullptr)
  136. {
  137. UINT32 numPasses = renElement.material->getNumPasses();
  138. for (UINT32 j = 0; j < numPasses; j++)
  139. {
  140. SPtr<PassCore> pass = renElement.material->getPass(j);
  141. SPtr<VertexDeclarationCore> shaderDecl = pass->getVertexProgram()->getInputDeclaration();
  142. if (!vertexDecl->isCompatible(shaderDecl))
  143. {
  144. Vector<VertexElement> missingElements = vertexDecl->getMissingElements(shaderDecl);
  145. StringStream wrnStream;
  146. wrnStream << "Provided mesh is missing required vertex attributes to render with the provided shader. Missing elements: " << std::endl;
  147. for (auto& entry : missingElements)
  148. wrnStream << "\t" << toString(entry.getSemantic()) << entry.getSemanticIdx() << std::endl;
  149. LOGWRN(wrnStream.str());
  150. break;
  151. }
  152. }
  153. }
  154. // If no material use the default material
  155. if (renElement.material == nullptr)
  156. renElement.material = mDefaultMaterial->getMaterial();
  157. auto iterFind = mSamplerOverrides.find(renElement.material);
  158. if (iterFind != mSamplerOverrides.end())
  159. {
  160. renElement.samplerOverrides = iterFind->second;
  161. iterFind->second->refCount++;
  162. }
  163. else
  164. {
  165. MaterialSamplerOverrides* samplerOverrides = SamplerOverrideUtility::generateSamplerOverrides(renElement.material, mCoreOptions);
  166. mSamplerOverrides[renElement.material] = samplerOverrides;
  167. renElement.samplerOverrides = samplerOverrides;
  168. samplerOverrides->refCount++;
  169. }
  170. if (renderableData.controller != nullptr)
  171. renderableData.controller->initializeRenderElem(renElement);
  172. }
  173. }
  174. }
  175. void RenderBeast::_notifyRenderableRemoved(RenderableCore* renderable)
  176. {
  177. UINT32 renderableId = renderable->getRendererId();
  178. RenderableCore* lastRenerable = mRenderables.back().renderable;
  179. UINT32 lastRenderableId = lastRenerable->getRendererId();
  180. Vector<BeastRenderableElement>& elements = mRenderables[renderableId].elements;
  181. for (auto& element : elements)
  182. {
  183. auto iterFind = mSamplerOverrides.find(element.material);
  184. assert(iterFind != mSamplerOverrides.end());
  185. MaterialSamplerOverrides* samplerOverrides = iterFind->second;
  186. samplerOverrides->refCount--;
  187. if (samplerOverrides->refCount == 0)
  188. {
  189. SamplerOverrideUtility::destroySamplerOverrides(samplerOverrides);
  190. mSamplerOverrides.erase(iterFind);
  191. }
  192. element.samplerOverrides = nullptr;
  193. }
  194. if (renderableId != lastRenderableId)
  195. {
  196. // Swap current last element with the one we want to erase
  197. std::swap(mRenderables[renderableId], mRenderables[lastRenderableId]);
  198. std::swap(mWorldBounds[renderableId], mWorldBounds[lastRenderableId]);
  199. std::swap(mRenderableShaderData[renderableId], mRenderableShaderData[lastRenderableId]);
  200. lastRenerable->setRendererId(renderableId);
  201. Vector<BeastRenderableElement>& lastRenderableElements = mRenderables[renderableId].elements;
  202. for (auto& element : elements)
  203. element.renderableId = renderableId;
  204. }
  205. // Last element is the one we want to erase
  206. mRenderables.erase(mRenderables.end() - 1);
  207. mWorldBounds.erase(mWorldBounds.end() - 1);
  208. mRenderableShaderData.erase(mRenderableShaderData.end() - 1);
  209. }
  210. void RenderBeast::_notifyRenderableUpdated(RenderableCore* renderable)
  211. {
  212. UINT32 renderableId = renderable->getRendererId();
  213. RenderableShaderData& shaderData = mRenderableShaderData[renderableId];
  214. shaderData.worldTransform = renderable->getTransform();
  215. shaderData.invWorldTransform = shaderData.worldTransform.inverseAffine();
  216. shaderData.worldNoScaleTransform = renderable->getTransformNoScale();
  217. shaderData.invWorldNoScaleTransform = shaderData.worldNoScaleTransform.inverseAffine();
  218. shaderData.worldDeterminantSign = shaderData.worldTransform.determinant3x3() >= 0.0f ? 1.0f : -1.0f;
  219. mWorldBounds[renderableId] = renderable->getBounds();
  220. }
  221. void RenderBeast::_notifyLightAdded(LightCore* light)
  222. {
  223. if (light->getType() == LightType::Directional)
  224. {
  225. UINT32 lightId = (UINT32)mDirectionalLights.size();
  226. light->setRendererId(lightId);
  227. mDirectionalLights.push_back(LightData());
  228. LightData& lightData = mDirectionalLights.back();
  229. lightData.internal = light;
  230. }
  231. else
  232. {
  233. UINT32 lightId = (UINT32)mPointLights.size();
  234. light->setRendererId(lightId);
  235. mPointLights.push_back(LightData());
  236. mLightWorldBounds.push_back(light->getBounds());
  237. LightData& lightData = mPointLights.back();
  238. lightData.internal = light;
  239. }
  240. }
  241. void RenderBeast::_notifyLightUpdated(LightCore* light)
  242. {
  243. UINT32 lightId = light->getRendererId();
  244. if (light->getType() != LightType::Directional)
  245. mLightWorldBounds[lightId] = light->getBounds();
  246. }
  247. void RenderBeast::_notifyLightRemoved(LightCore* light)
  248. {
  249. UINT32 lightId = light->getRendererId();
  250. if (light->getType() == LightType::Directional)
  251. {
  252. LightCore* lastLight = mDirectionalLights.back().internal;
  253. UINT32 lastLightId = lastLight->getRendererId();
  254. if (lightId != lastLightId)
  255. {
  256. // Swap current last element with the one we want to erase
  257. std::swap(mDirectionalLights[lightId], mDirectionalLights[lastLightId]);
  258. lastLight->setRendererId(lightId);
  259. }
  260. // Last element is the one we want to erase
  261. mDirectionalLights.erase(mDirectionalLights.end() - 1);
  262. }
  263. else
  264. {
  265. LightCore* lastLight = mPointLights.back().internal;
  266. UINT32 lastLightId = lastLight->getRendererId();
  267. if (lightId != lastLightId)
  268. {
  269. // Swap current last element with the one we want to erase
  270. std::swap(mPointLights[lightId], mPointLights[lastLightId]);
  271. std::swap(mLightWorldBounds[lightId], mLightWorldBounds[lastLightId]);
  272. lastLight->setRendererId(lightId);
  273. }
  274. // Last element is the one we want to erase
  275. mPointLights.erase(mPointLights.end() - 1);
  276. mLightWorldBounds.erase(mLightWorldBounds.end() - 1);
  277. }
  278. }
  279. void RenderBeast::_notifyCameraAdded(const CameraCore* camera)
  280. {
  281. SPtr<RenderTargetCore> renderTarget = camera->getViewport()->getTarget();
  282. if (renderTarget == nullptr)
  283. return;
  284. CameraData& camData = mCameraData[camera];
  285. camData.opaqueQueue = bs_shared_ptr_new<RenderQueue>(mCoreOptions->stateReductionMode);
  286. StateReduction transparentStateReduction = mCoreOptions->stateReductionMode;
  287. if (transparentStateReduction == StateReduction::Material)
  288. transparentStateReduction = StateReduction::Distance; // Transparent object MUST be sorted by distance
  289. camData.transparentQueue = bs_shared_ptr_new<RenderQueue>(transparentStateReduction);
  290. // Register in render target list
  291. auto findIter = std::find_if(mRenderTargets.begin(), mRenderTargets.end(),
  292. [&](const RenderTargetData& x) { return x.target == renderTarget; });
  293. if (findIter != mRenderTargets.end())
  294. {
  295. findIter->cameras.push_back(camera);
  296. }
  297. else
  298. {
  299. mRenderTargets.push_back(RenderTargetData());
  300. RenderTargetData& renderTargetData = mRenderTargets.back();
  301. renderTargetData.target = renderTarget;
  302. renderTargetData.cameras.push_back(camera);
  303. }
  304. // Sort render targets based on priority
  305. auto cameraComparer = [&](const CameraCore* a, const CameraCore* b) { return a->getPriority() > b->getPriority(); };
  306. auto renderTargetInfoComparer = [&](const RenderTargetData& a, const RenderTargetData& b)
  307. { return a.target->getProperties().getPriority() > b.target->getProperties().getPriority(); };
  308. std::sort(begin(mRenderTargets), end(mRenderTargets), renderTargetInfoComparer);
  309. for (auto& camerasPerTarget : mRenderTargets)
  310. {
  311. Vector<const CameraCore*>& cameras = camerasPerTarget.cameras;
  312. std::sort(begin(cameras), end(cameras), cameraComparer);
  313. }
  314. }
  315. void RenderBeast::_notifyCameraRemoved(const CameraCore* camera)
  316. {
  317. mCameraData.erase(camera);
  318. // Remove from render target list
  319. for (auto iterTarget = mRenderTargets.begin(); iterTarget != mRenderTargets.end(); ++iterTarget)
  320. {
  321. RenderTargetData& target = *iterTarget;
  322. for (auto iterCam = target.cameras.begin(); iterCam != target.cameras.end(); ++iterCam)
  323. {
  324. if (camera == *iterCam)
  325. {
  326. target.cameras.erase(iterCam);
  327. break;
  328. }
  329. }
  330. if (target.cameras.empty())
  331. {
  332. mRenderTargets.erase(iterTarget);
  333. break;
  334. }
  335. }
  336. }
  337. void RenderBeast::setOptions(const SPtr<CoreRendererOptions>& options)
  338. {
  339. mOptions = std::static_pointer_cast<RenderBeastOptions>(options);
  340. mOptionsDirty = true;
  341. }
  342. SPtr<CoreRendererOptions> RenderBeast::getOptions() const
  343. {
  344. return mOptions;
  345. }
  346. void RenderBeast::renderAll()
  347. {
  348. // Sync all dirty sim thread CoreObject data to core thread
  349. CoreObjectManager::instance().syncToCore(gCoreAccessor());
  350. if (mOptionsDirty)
  351. {
  352. gCoreAccessor().queueCommand(std::bind(&RenderBeast::syncRenderOptions, this, *mOptions));
  353. mOptionsDirty = false;
  354. }
  355. gCoreAccessor().queueCommand(std::bind(&RenderBeast::renderAllCore, this, gTime().getTime()));
  356. }
  357. void RenderBeast::syncRenderOptions(const RenderBeastOptions& options)
  358. {
  359. bool filteringChanged = mCoreOptions->filtering != options.filtering;
  360. if (options.filtering == RenderBeastFiltering::Anisotropic)
  361. filteringChanged |= mCoreOptions->anisotropyMax != options.anisotropyMax;
  362. if (filteringChanged)
  363. refreshSamplerOverrides(true);
  364. *mCoreOptions = options;
  365. for (auto& cameraData : mCameraData)
  366. {
  367. cameraData.second.opaqueQueue->setStateReduction(mCoreOptions->stateReductionMode);
  368. StateReduction transparentStateReduction = mCoreOptions->stateReductionMode;
  369. if (transparentStateReduction == StateReduction::Material)
  370. transparentStateReduction = StateReduction::Distance; // Transparent object MUST be sorted by distance
  371. cameraData.second.transparentQueue->setStateReduction(transparentStateReduction);
  372. }
  373. }
  374. void RenderBeast::renderAllCore(float time)
  375. {
  376. THROW_IF_NOT_CORE_THREAD;
  377. gProfilerCPU().beginSample("renderAllCore");
  378. // Note: I'm iterating over all sampler states every frame. If this ends up being a performance
  379. // issue consider handling this internally in MaterialCore which can only do it when sampler states
  380. // are actually modified after sync
  381. refreshSamplerOverrides();
  382. // Update global per-frame hardware buffers
  383. mStaticHandler->updatePerFrameBuffers(time);
  384. // Generate render queues per camera
  385. for (auto& cameraData : mCameraData)
  386. {
  387. const CameraCore* camera = cameraData.first;
  388. determineVisible(*camera);
  389. }
  390. // Render everything, target by target
  391. for (auto& renderTargetData : mRenderTargets)
  392. {
  393. SPtr<RenderTargetCore> target = renderTargetData.target;
  394. Vector<const CameraCore*>& cameras = renderTargetData.cameras;
  395. RenderAPICore::instance().beginFrame();
  396. UINT32 numCameras = (UINT32)cameras.size();
  397. for (UINT32 i = 0; i < numCameras; i++)
  398. render(renderTargetData, i);
  399. RenderAPICore::instance().endFrame();
  400. RenderAPICore::instance().swapBuffers(target);
  401. }
  402. gProfilerCPU().endSample("renderAllCore");
  403. }
  404. void RenderBeast::render(RenderTargetData& rtData, UINT32 camIdx)
  405. {
  406. gProfilerCPU().beginSample("Render");
  407. const CameraCore* camera = rtData.cameras[camIdx];
  408. CameraData& camData = mCameraData[camera];
  409. SPtr<ViewportCore> viewport = camera->getViewport();
  410. CameraShaderData cameraShaderData = getCameraShaderData(*camera);
  411. mStaticHandler->updatePerCameraBuffers(cameraShaderData);
  412. // Render scene objects to g-buffer
  413. bool hasGBuffer = ((UINT32)camera->getFlags() & (UINT32)CameraFlags::Overlay) == 0;
  414. if (hasGBuffer)
  415. {
  416. bool createGBuffer = camData.target == nullptr ||
  417. camData.target->getHDR() != mCoreOptions->hdr ||
  418. camData.target->getNumSamples() != mCoreOptions->msaa;
  419. if (createGBuffer)
  420. camData.target = RenderTargets::create(viewport, mCoreOptions->hdr, mCoreOptions->msaa);
  421. camData.target->allocate();
  422. camData.target->bindGBuffer();
  423. }
  424. else
  425. camData.target = nullptr;
  426. // Trigger pre-scene callbacks
  427. auto iterCameraCallbacks = mRenderCallbacks.find(camera);
  428. if (iterCameraCallbacks != mRenderCallbacks.end())
  429. {
  430. for (auto& callbackPair : iterCameraCallbacks->second)
  431. {
  432. const RenderCallbackData& callbackData = callbackPair.second;
  433. if (callbackData.overlay)
  434. continue;
  435. if (callbackPair.first >= 0)
  436. break;
  437. callbackData.callback();
  438. }
  439. }
  440. if (hasGBuffer)
  441. {
  442. // Render base pass
  443. const Vector<RenderQueueElement>& opaqueElements = camData.opaqueQueue->getSortedElements();
  444. for (auto iter = opaqueElements.begin(); iter != opaqueElements.end(); ++iter)
  445. {
  446. BeastRenderableElement* renderElem = static_cast<BeastRenderableElement*>(iter->renderElem);
  447. SPtr<MaterialCore> material = renderElem->material;
  448. UINT32 rendererId = renderElem->renderableId;
  449. Matrix4 worldViewProjMatrix = cameraShaderData.viewProj * mRenderableShaderData[rendererId].worldTransform;
  450. mStaticHandler->updatePerObjectBuffers(*renderElem, mRenderableShaderData[rendererId], worldViewProjMatrix);
  451. mStaticHandler->bindGlobalBuffers(*renderElem); // Note: If I can keep global buffer slot indexes the same between shaders I could only bind these once
  452. mStaticHandler->bindPerObjectBuffers(*renderElem);
  453. if (iter->applyPass)
  454. {
  455. SPtr<PassCore> pass = material->getPass(iter->passIdx);
  456. setPass(pass);
  457. }
  458. SPtr<PassParametersCore> passParams = material->getPassParameters(iter->passIdx);
  459. if (renderElem->samplerOverrides != nullptr)
  460. setPassParams(passParams, &renderElem->samplerOverrides->passes[iter->passIdx]);
  461. else
  462. setPassParams(passParams, nullptr);
  463. gRendererUtility().draw(iter->renderElem->mesh, iter->renderElem->subMesh);
  464. }
  465. camData.target->bindSceneColor(true);
  466. // Render light pass
  467. SPtr<GpuParamBlockBufferCore> perCameraBuffer = mStaticHandler->getPerCameraParams().getBuffer();
  468. SPtr<MaterialCore> dirMaterial = mDirLightMat->getMaterial();
  469. SPtr<PassCore> dirPass = dirMaterial->getPass(0);
  470. setPass(dirPass);
  471. mDirLightMat->setStaticParameters(camData.target, perCameraBuffer);
  472. for (auto& light : mDirectionalLights)
  473. {
  474. if (!light.internal->getIsActive())
  475. continue;
  476. mDirLightMat->setParameters(light.internal);
  477. // TODO - Bind parameters to the pipeline manually as I don't need to re-bind gbuffer textures for every light
  478. setPassParams(dirMaterial->getPassParameters(0), nullptr);
  479. gRendererUtility().drawScreenQuad(*viewport);
  480. }
  481. SPtr<MaterialCore> pointMaterial = mPointLightMat->getMaterial();
  482. SPtr<PassCore> pointPass = pointMaterial->getPass(0);
  483. // TODO - Possibly use instanced drawing here as only two meshes are drawn with various properties
  484. setPass(pointPass);
  485. mPointLightMat->setStaticParameters(camData.target, perCameraBuffer);
  486. // TODO - Cull lights based on visibility, right now I just iterate over all of them.
  487. for (auto& light : mPointLights)
  488. {
  489. if (!light.internal->getIsActive())
  490. continue;
  491. mPointLightMat->setParameters(light.internal);
  492. float distToLight = (light.internal->getBounds().getCenter() - camera->getPosition()).squaredLength();
  493. float boundRadius = light.internal->getBounds().getRadius() * 1.05f + camera->getNearClipDistance() * 2.0f;
  494. // TODO - Replace these manually assigned states with two different versions of point light shader once I implement
  495. // a preprocessor parser for BSL
  496. RenderAPICore& rapi = RenderAPICore::instance();
  497. bool cameraInLightGeometry = distToLight < boundRadius * boundRadius;
  498. if(cameraInLightGeometry)
  499. {
  500. // Draw back faces with no depth testing
  501. rapi.setDepthStencilState(mPointLightInGeomDSState, 0);
  502. rapi.setRasterizerState(mPointLightInGeomRState);
  503. }
  504. else
  505. {
  506. // Draw front faces with depth testing
  507. rapi.setDepthStencilState(mPointLightOutGeomDSState, 0);
  508. rapi.setRasterizerState(mPointLightOutGeomRState);
  509. }
  510. // TODO - Bind parameters to the pipeline manually as I don't need to re-bind gbuffer textures for every light
  511. setPassParams(pointMaterial->getPassParameters(0), nullptr);
  512. SPtr<MeshCore> mesh = light.internal->getMesh();
  513. gRendererUtility().draw(mesh, mesh->getProperties().getSubMesh(0));
  514. }
  515. camData.target->bindSceneColor(false);
  516. }
  517. else
  518. {
  519. // Prepare final render target
  520. SPtr<RenderTargetCore> target = rtData.target;
  521. RenderAPICore::instance().setRenderTarget(target);
  522. RenderAPICore::instance().setViewport(viewport->getNormArea());
  523. // If first camera in render target, prepare the render target
  524. if (camIdx == 0)
  525. {
  526. UINT32 clearBuffers = 0;
  527. if (viewport->getRequiresColorClear())
  528. clearBuffers |= FBT_COLOR;
  529. if (viewport->getRequiresDepthClear())
  530. clearBuffers |= FBT_DEPTH;
  531. if (viewport->getRequiresStencilClear())
  532. clearBuffers |= FBT_STENCIL;
  533. if (clearBuffers != 0)
  534. {
  535. RenderAPICore::instance().clearViewport(clearBuffers, viewport->getClearColor(),
  536. viewport->getClearDepthValue(), viewport->getClearStencilValue());
  537. }
  538. }
  539. }
  540. // Render transparent objects (TODO - No lighting yet)
  541. const Vector<RenderQueueElement>& transparentElements = camData.transparentQueue->getSortedElements();
  542. for (auto iter = transparentElements.begin(); iter != transparentElements.end(); ++iter)
  543. {
  544. BeastRenderableElement* renderElem = static_cast<BeastRenderableElement*>(iter->renderElem);
  545. SPtr<MaterialCore> material = renderElem->material;
  546. UINT32 rendererId = renderElem->renderableId;
  547. Matrix4 worldViewProjMatrix = cameraShaderData.viewProj * mRenderableShaderData[rendererId].worldTransform;
  548. mStaticHandler->updatePerObjectBuffers(*renderElem, mRenderableShaderData[rendererId], worldViewProjMatrix);
  549. mStaticHandler->bindGlobalBuffers(*renderElem); // Note: If I can keep global buffer slot indexes the same between shaders I could only bind these once
  550. mStaticHandler->bindPerObjectBuffers(*renderElem);
  551. if (iter->applyPass)
  552. {
  553. SPtr<PassCore> pass = material->getPass(iter->passIdx);
  554. setPass(pass);
  555. }
  556. SPtr<PassParametersCore> passParams = material->getPassParameters(iter->passIdx);
  557. if (renderElem->samplerOverrides != nullptr)
  558. setPassParams(passParams, &renderElem->samplerOverrides->passes[iter->passIdx]);
  559. else
  560. setPassParams(passParams, nullptr);
  561. gRendererUtility().draw(iter->renderElem->mesh, iter->renderElem->subMesh);
  562. }
  563. camData.opaqueQueue->clear();
  564. camData.transparentQueue->clear();
  565. // Render non-overlay post-scene callbacks
  566. if (iterCameraCallbacks != mRenderCallbacks.end())
  567. {
  568. for (auto& callbackPair : iterCameraCallbacks->second)
  569. {
  570. const RenderCallbackData& callbackData = callbackPair.second;
  571. if (callbackData.overlay || callbackPair.first < 0)
  572. continue;
  573. callbackData.callback();
  574. }
  575. }
  576. if (hasGBuffer)
  577. {
  578. // TODO - Instead of doing a separate resolve here I could potentially perform a resolve directly in the
  579. // light pass.
  580. camData.target->resolve();
  581. }
  582. // Render overlay post-scene callbacks
  583. if (iterCameraCallbacks != mRenderCallbacks.end())
  584. {
  585. for (auto& callbackPair : iterCameraCallbacks->second)
  586. {
  587. const RenderCallbackData& callbackData = callbackPair.second;
  588. if (!callbackData.overlay)
  589. continue;
  590. callbackData.callback();
  591. }
  592. }
  593. if (hasGBuffer)
  594. camData.target->release();
  595. gProfilerCPU().endSample("Render");
  596. }
  597. void RenderBeast::determineVisible(const CameraCore& camera)
  598. {
  599. CameraData& cameraData = mCameraData[&camera];
  600. UINT64 cameraLayers = camera.getLayers();
  601. ConvexVolume worldFrustum = camera.getWorldFrustum();
  602. // Update per-object param buffers and queue render elements
  603. for (auto& renderableData : mRenderables)
  604. {
  605. RenderableCore* renderable = renderableData.renderable;
  606. RenderableHandler* controller = renderableData.controller;
  607. UINT32 renderableType = renderable->getRenderableType();
  608. UINT32 rendererId = renderable->getRendererId();
  609. if ((renderable->getLayer() & cameraLayers) == 0)
  610. continue;
  611. // Do frustum culling
  612. // TODO - This is bound to be a bottleneck at some point. When it is ensure that intersect
  613. // methods use vector operations, as it is trivial to update them.
  614. const Sphere& boundingSphere = mWorldBounds[rendererId].getSphere();
  615. if (worldFrustum.intersects(boundingSphere))
  616. {
  617. // More precise with the box
  618. const AABox& boundingBox = mWorldBounds[rendererId].getBox();
  619. if (worldFrustum.intersects(boundingBox))
  620. {
  621. float distanceToCamera = (camera.getPosition() - boundingBox.getCenter()).length();
  622. for (auto& renderElem : renderableData.elements)
  623. {
  624. bool isTransparent = (renderElem.material->getShader()->getFlags() & (UINT32)ShaderFlags::Transparent) != 0;
  625. if (isTransparent)
  626. cameraData.transparentQueue->add(&renderElem, distanceToCamera);
  627. else
  628. cameraData.opaqueQueue->add(&renderElem, distanceToCamera);
  629. }
  630. }
  631. }
  632. }
  633. cameraData.opaqueQueue->sort();
  634. cameraData.transparentQueue->sort();
  635. }
  636. Vector2 RenderBeast::getDeviceZTransform()
  637. {
  638. RenderAPICore& rapi = RenderAPICore::instance();
  639. Vector2 output;
  640. output.x = rapi.getMaximumDepthInputValue() - rapi.getMinimumDepthInputValue();
  641. output.y = -rapi.getMinimumDepthInputValue();
  642. return output;
  643. }
  644. CameraShaderData RenderBeast::getCameraShaderData(const CameraCore& camera)
  645. {
  646. CameraShaderData data;
  647. data.proj = camera.getProjectionMatrixRS();
  648. data.view = camera.getViewMatrix();
  649. data.viewProj = data.proj * data.view;
  650. data.invProj = data.proj.inverse();
  651. data.invViewProj = data.viewProj.inverse();
  652. data.viewDir = camera.getForward();
  653. data.viewOrigin = camera.getPosition();
  654. data.deviceZToWorldZ = getDeviceZTransform();
  655. SPtr<ViewportCore> viewport = camera.getViewport();
  656. SPtr<RenderTargetCore> rt = viewport->getTarget();
  657. float halfWidth = viewport->getWidth() * 0.5f;
  658. float halfHeight = viewport->getHeight() * 0.5f;
  659. float rtWidth = (float)rt->getProperties().getWidth();
  660. float rtHeight = (float)rt->getProperties().getHeight();
  661. RenderAPICore& rapi = RenderAPICore::instance();
  662. data.clipToUVScaleOffset.x = halfWidth / rtWidth;
  663. data.clipToUVScaleOffset.y = -halfHeight / rtHeight;
  664. data.clipToUVScaleOffset.z = viewport->getX() / rtWidth + (halfWidth + rapi.getHorizontalTexelOffset()) / rtWidth;
  665. data.clipToUVScaleOffset.w = viewport->getY() / rtHeight + (halfHeight + rapi.getVerticalTexelOffset()) / rtHeight;
  666. return data;
  667. }
  668. void RenderBeast::refreshSamplerOverrides(bool force)
  669. {
  670. for (auto& entry : mSamplerOverrides)
  671. {
  672. SPtr<MaterialCore> material = entry.first;
  673. if (force)
  674. {
  675. SamplerOverrideUtility::destroySamplerOverrides(entry.second);
  676. entry.second = SamplerOverrideUtility::generateSamplerOverrides(material, mCoreOptions);
  677. }
  678. else
  679. {
  680. MaterialSamplerOverrides* materialOverrides = entry.second;
  681. UINT32 numPasses = material->getNumPasses();
  682. assert(numPasses == materialOverrides->numPasses);
  683. for (UINT32 i = 0; i < numPasses; i++)
  684. {
  685. SPtr<PassParametersCore> passParams = material->getPassParameters(i);
  686. PassSamplerOverrides& passOverrides = materialOverrides->passes[i];
  687. for (UINT32 j = 0; j < PassParametersCore::NUM_PARAMS; j++)
  688. {
  689. StageSamplerOverrides& stageOverrides = passOverrides.stages[j];
  690. SPtr<GpuParamsCore> params = passParams->getParamByIdx(j);
  691. if (params == nullptr)
  692. continue;
  693. const GpuParamDesc& paramDesc = params->getParamDesc();
  694. for (auto iter = paramDesc.samplers.begin(); iter != paramDesc.samplers.end(); ++iter)
  695. {
  696. UINT32 slot = iter->second.slot;
  697. SPtr<SamplerStateCore> samplerState = params->getSamplerState(slot);
  698. assert(stageOverrides.numStates > slot);
  699. if (samplerState != stageOverrides.stateOverrides[slot])
  700. {
  701. if (samplerState != nullptr)
  702. stageOverrides.stateOverrides[slot] = SamplerOverrideUtility::generateSamplerOverride(samplerState, mCoreOptions);
  703. else
  704. stageOverrides.stateOverrides[slot] = SamplerOverrideUtility::generateSamplerOverride(SamplerStateCore::getDefault(), mCoreOptions);;
  705. }
  706. }
  707. }
  708. }
  709. }
  710. }
  711. }
  712. void RenderBeast::setPass(const SPtr<PassCore>& pass)
  713. {
  714. THROW_IF_NOT_CORE_THREAD;
  715. RenderAPICore& rs = RenderAPICore::instance();
  716. struct StageData
  717. {
  718. GpuProgramType type;
  719. bool enable;
  720. SPtr<GpuProgramCore> program;
  721. };
  722. const UINT32 numStages = 6;
  723. StageData stages[numStages] =
  724. {
  725. { GPT_VERTEX_PROGRAM, pass->hasVertexProgram(), pass->getVertexProgram() },
  726. { GPT_FRAGMENT_PROGRAM, pass->hasFragmentProgram(), pass->getFragmentProgram() },
  727. { GPT_GEOMETRY_PROGRAM, pass->hasGeometryProgram(), pass->getGeometryProgram() },
  728. { GPT_HULL_PROGRAM, pass->hasHullProgram(), pass->getHullProgram() },
  729. { GPT_DOMAIN_PROGRAM, pass->hasDomainProgram(), pass->getDomainProgram() },
  730. { GPT_COMPUTE_PROGRAM, pass->hasComputeProgram(), pass->getComputeProgram() }
  731. };
  732. for (UINT32 i = 0; i < numStages; i++)
  733. {
  734. const StageData& stage = stages[i];
  735. if (stage.enable)
  736. rs.bindGpuProgram(stage.program);
  737. else
  738. rs.unbindGpuProgram(stage.type);
  739. }
  740. // Set up non-texture related pass settings
  741. if (pass->getBlendState() != nullptr)
  742. rs.setBlendState(pass->getBlendState());
  743. else
  744. rs.setBlendState(BlendStateCore::getDefault());
  745. if (pass->getDepthStencilState() != nullptr)
  746. rs.setDepthStencilState(pass->getDepthStencilState(), pass->getStencilRefValue());
  747. else
  748. rs.setDepthStencilState(DepthStencilStateCore::getDefault(), pass->getStencilRefValue());
  749. if (pass->getRasterizerState() != nullptr)
  750. rs.setRasterizerState(pass->getRasterizerState());
  751. else
  752. rs.setRasterizerState(RasterizerStateCore::getDefault());
  753. }
  754. void RenderBeast::setPassParams(const SPtr<PassParametersCore>& passParams, const PassSamplerOverrides* samplerOverrides)
  755. {
  756. THROW_IF_NOT_CORE_THREAD;
  757. RenderAPICore& rs = RenderAPICore::instance();
  758. struct StageData
  759. {
  760. GpuProgramType type;
  761. SPtr<GpuParamsCore> params;
  762. };
  763. const UINT32 numStages = 6;
  764. StageData stages[numStages] =
  765. {
  766. { GPT_VERTEX_PROGRAM, passParams->mVertParams },
  767. { GPT_FRAGMENT_PROGRAM, passParams->mFragParams },
  768. { GPT_GEOMETRY_PROGRAM, passParams->mGeomParams },
  769. { GPT_HULL_PROGRAM, passParams->mHullParams },
  770. { GPT_DOMAIN_PROGRAM, passParams->mDomainParams },
  771. { GPT_COMPUTE_PROGRAM, passParams->mComputeParams }
  772. };
  773. for (UINT32 i = 0; i < numStages; i++)
  774. {
  775. const StageData& stage = stages[i];
  776. SPtr<GpuParamsCore> params = stage.params;
  777. if (params == nullptr)
  778. continue;
  779. const GpuParamDesc& paramDesc = params->getParamDesc();
  780. for (auto iter = paramDesc.samplers.begin(); iter != paramDesc.samplers.end(); ++iter)
  781. {
  782. SPtr<SamplerStateCore> samplerState;
  783. if (samplerOverrides != nullptr)
  784. samplerState = samplerOverrides->stages[i].stateOverrides[iter->second.slot];
  785. else
  786. samplerState = params->getSamplerState(iter->second.slot);
  787. if (samplerState == nullptr)
  788. rs.setSamplerState(stage.type, iter->second.slot, SamplerStateCore::getDefault());
  789. else
  790. rs.setSamplerState(stage.type, iter->second.slot, samplerState);
  791. }
  792. for (auto iter = paramDesc.textures.begin(); iter != paramDesc.textures.end(); ++iter)
  793. {
  794. SPtr<TextureCore> texture = params->getTexture(iter->second.slot);
  795. if (!params->isLoadStoreTexture(iter->second.slot))
  796. {
  797. if (texture == nullptr)
  798. rs.setTexture(stage.type, iter->second.slot, false, nullptr);
  799. else
  800. rs.setTexture(stage.type, iter->second.slot, true, texture);
  801. }
  802. else
  803. {
  804. const TextureSurface& surface = params->getLoadStoreSurface(iter->second.slot);
  805. if (texture == nullptr)
  806. rs.setLoadStoreTexture(stage.type, iter->second.slot, false, nullptr, surface);
  807. else
  808. rs.setLoadStoreTexture(stage.type, iter->second.slot, true, texture, surface);
  809. }
  810. }
  811. rs.setConstantBuffers(stage.type, params);
  812. }
  813. }
  814. }