BsMeshHeap.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674
  1. #include "BsMeshHeap.h"
  2. #include "BsCoreThread.h"
  3. #include "BsTransientMesh.h"
  4. #include "BsHardwareBufferManager.h"
  5. #include "BsVertexDataDesc.h"
  6. #include "BsVertexData.h"
  7. #include "BsMeshData.h"
  8. #include "BsMath.h"
  9. #include "BsEventQuery.h"
  10. namespace BansheeEngine
  11. {
  12. const float MeshHeap::GrowPercent = 1.5f;
  13. MeshHeap::MeshHeap(UINT32 numVertices, UINT32 numIndices,
  14. const VertexDataDescPtr& vertexDesc, IndexBuffer::IndexType indexType)
  15. :mNumVertices(numVertices), mNumIndices(numIndices), mNextFreeId(0),
  16. mIndexType(indexType), mVertexDesc(vertexDesc), mCPUIndexData(nullptr),
  17. mNextQueryId(0)
  18. {
  19. for(UINT32 i = 0; i <= mVertexDesc->getMaxStreamIdx(); i++)
  20. {
  21. mCPUVertexData.push_back(nullptr);
  22. }
  23. }
  24. MeshHeap::~MeshHeap()
  25. {
  26. }
  27. MeshHeapPtr MeshHeap::create(UINT32 numVertices, UINT32 numIndices,
  28. const VertexDataDescPtr& vertexDesc, IndexBuffer::IndexType indexType)
  29. {
  30. MeshHeap* meshHeap = new (bs_alloc<MeshHeap>()) MeshHeap(numVertices, numIndices, vertexDesc, indexType);
  31. MeshHeapPtr meshHeapPtr = bs_core_ptr<MeshHeap, GenAlloc>(meshHeap);
  32. meshHeapPtr->_setThisPtr(meshHeapPtr);
  33. meshHeapPtr->initialize();
  34. return meshHeapPtr;
  35. }
  36. void MeshHeap::initialize_internal()
  37. {
  38. THROW_IF_NOT_CORE_THREAD;
  39. growVertexBuffer(mNumVertices);
  40. growIndexBuffer(mNumIndices);
  41. CoreObject::initialize_internal();
  42. }
  43. void MeshHeap::destroy_internal()
  44. {
  45. THROW_IF_NOT_CORE_THREAD;
  46. for(auto& cpuVertBuffer : mCPUVertexData)
  47. bs_free(cpuVertBuffer);
  48. if(mCPUIndexData != nullptr)
  49. bs_free(mCPUIndexData);
  50. mVertexData = nullptr;
  51. mIndexBuffer = nullptr;
  52. mVertexDesc = nullptr;
  53. CoreObject::destroy_internal();
  54. }
  55. TransientMeshPtr MeshHeap::alloc(const MeshDataPtr& meshData, DrawOperationType drawOp)
  56. {
  57. UINT32 meshIdx = mNextFreeId++;
  58. MeshHeapPtr thisPtr = std::static_pointer_cast<MeshHeap>(getThisPtr());
  59. TransientMesh* transientMesh = new (bs_alloc<TransientMesh>()) TransientMesh(thisPtr, meshIdx, meshData->getNumVertices(), meshData->getNumIndices(), drawOp);
  60. TransientMeshPtr transientMeshPtr = bs_core_ptr<TransientMesh, GenAlloc>(transientMesh);
  61. transientMeshPtr->_setThisPtr(transientMeshPtr);
  62. transientMeshPtr->initialize();
  63. mMeshes[meshIdx] = transientMeshPtr;
  64. queueGpuCommand(getThisPtr(), std::bind(&MeshHeap::allocInternal, this, transientMeshPtr, meshData));
  65. return transientMeshPtr;
  66. }
  67. void MeshHeap::dealloc(const TransientMeshPtr& mesh)
  68. {
  69. auto iterFind = mMeshes.find(mesh->mId);
  70. if(iterFind == mMeshes.end())
  71. return;
  72. mesh->markAsDestroyed();
  73. mMeshes.erase(iterFind);
  74. queueGpuCommand(getThisPtr(), std::bind(&MeshHeap::deallocInternal, this, mesh));
  75. }
  76. void MeshHeap::allocInternal(TransientMeshPtr mesh, const MeshDataPtr& meshData)
  77. {
  78. // Find free vertex chunk and grow if needed
  79. UINT32 smallestVertFit = 0;
  80. UINT32 smallestVertFitIdx = 0;
  81. while(smallestVertFit == 0)
  82. {
  83. UINT32 curIdx = 0;
  84. for(auto& chunkIdx : mFreeVertChunks)
  85. {
  86. ChunkData& chunk = mVertChunks[chunkIdx];
  87. if(chunk.size >= meshData->getNumVertices() && (chunk.size < smallestVertFit || smallestVertFit == 0))
  88. {
  89. smallestVertFit = chunk.size;
  90. smallestVertFitIdx = curIdx;
  91. }
  92. curIdx++;
  93. }
  94. if(smallestVertFit > 0)
  95. break;
  96. UINT32 newNumVertices = mNumVertices;
  97. while(newNumVertices < (mNumVertices + meshData->getNumVertices()))
  98. {
  99. newNumVertices = Math::roundToInt(newNumVertices * GrowPercent);
  100. }
  101. growVertexBuffer(newNumVertices);
  102. }
  103. // Find free index chunk and grow if needed
  104. UINT32 smallestIdxFit = 0;
  105. UINT32 smallestIdxFitIdx = 0;
  106. while(smallestIdxFit == 0)
  107. {
  108. UINT32 curIdx = 0;
  109. for(auto& chunkIdx : mFreeIdxChunks)
  110. {
  111. ChunkData& chunk = mIdxChunks[chunkIdx];
  112. if(chunk.size >= meshData->getNumIndices() && (chunk.size < smallestIdxFit || smallestIdxFit == 0))
  113. {
  114. smallestIdxFit = chunk.size;
  115. smallestIdxFitIdx = curIdx;
  116. }
  117. curIdx++;
  118. }
  119. if(smallestIdxFit > 0)
  120. break;
  121. UINT32 newNumIndices = mNumIndices;
  122. while(newNumIndices < (mNumIndices + meshData->getNumIndices()))
  123. {
  124. newNumIndices = Math::roundToInt(newNumIndices * GrowPercent);
  125. }
  126. growIndexBuffer(newNumIndices);
  127. }
  128. UINT32 freeVertChunkIdx = 0;
  129. UINT32 freeIdxChunkIdx = 0;
  130. auto freeVertIter = mFreeVertChunks.begin();
  131. freeVertChunkIdx = (*freeVertIter);
  132. for(UINT32 i = 0; i < smallestVertFitIdx; i++)
  133. {
  134. freeVertIter++;
  135. freeVertChunkIdx = (*freeVertIter);
  136. }
  137. mFreeVertChunks.erase(freeVertIter);
  138. auto freeIdxIter = mFreeIdxChunks.begin();
  139. freeIdxChunkIdx = (*freeIdxIter);
  140. for(UINT32 i = 0; i < smallestIdxFitIdx; i++)
  141. {
  142. freeIdxIter++;
  143. freeIdxChunkIdx = (*freeIdxIter);
  144. }
  145. mFreeIdxChunks.erase(freeIdxIter);
  146. ChunkData& vertChunk = mVertChunks[freeVertChunkIdx];
  147. ChunkData& idxChunk = mIdxChunks[freeIdxChunkIdx];
  148. UINT32 vertChunkStart = vertChunk.start;
  149. UINT32 idxChunkStart = idxChunk.start;
  150. UINT32 remainingNumVerts = vertChunk.size - meshData->getNumVertices();
  151. UINT32 remainingNumIdx = idxChunk.size - meshData->getNumIndices();
  152. vertChunk.size = meshData->getNumVertices();
  153. idxChunk.size = meshData->getNumIndices();
  154. if(remainingNumVerts > 0)
  155. {
  156. if(!mEmptyVertChunks.empty())
  157. {
  158. UINT32 emptyChunkIdx = mEmptyVertChunks.top();
  159. ChunkData& emptyChunk = mVertChunks[emptyChunkIdx];
  160. mEmptyVertChunks.pop();
  161. emptyChunk.start = vertChunkStart + meshData->getNumVertices();
  162. emptyChunk.size = remainingNumVerts;
  163. }
  164. else
  165. {
  166. ChunkData newChunk;
  167. newChunk.size = remainingNumVerts;
  168. newChunk.start = vertChunkStart + meshData->getNumVertices();
  169. mVertChunks.push_back(newChunk);
  170. mFreeVertChunks.push_back((UINT32)(mVertChunks.size() - 1));
  171. }
  172. }
  173. if(remainingNumIdx > 0)
  174. {
  175. if(!mEmptyIdxChunks.empty())
  176. {
  177. UINT32 emptyChunkIdx = mEmptyIdxChunks.top();
  178. ChunkData& emptyChunk = mIdxChunks[emptyChunkIdx];
  179. mEmptyIdxChunks.pop();
  180. emptyChunk.start = idxChunkStart + meshData->getNumIndices();
  181. emptyChunk.size = remainingNumIdx;
  182. }
  183. else
  184. {
  185. ChunkData newChunk;
  186. newChunk.size = remainingNumIdx;
  187. newChunk.start = idxChunkStart + meshData->getNumIndices();
  188. mIdxChunks.push_back(newChunk);
  189. mFreeIdxChunks.push_back((UINT32)(mIdxChunks.size() - 1));
  190. }
  191. }
  192. AllocatedData newAllocData;
  193. newAllocData.vertChunkIdx = freeVertChunkIdx;
  194. newAllocData.idxChunkIdx = freeIdxChunkIdx;
  195. newAllocData.useFlags = UseFlags::GPUFree;
  196. newAllocData.eventQueryIdx = createEventQuery();
  197. newAllocData.mesh = mesh;
  198. mMeshAllocData[mesh->getMeshHeapId()] = newAllocData;
  199. // Actually copy data
  200. for(UINT32 i = 0; i <= mVertexDesc->getMaxStreamIdx(); i++)
  201. {
  202. if(!mVertexDesc->hasStream(i))
  203. continue;
  204. if(!meshData->getVertexDesc()->hasStream(i))
  205. continue;
  206. // Ensure vertex sizes match
  207. UINT32 vertSize = mVertexData->vertexDeclaration->getVertexSize(i);
  208. UINT32 otherVertSize = meshData->getVertexDesc()->getVertexStride(i);
  209. if(otherVertSize != vertSize)
  210. {
  211. BS_EXCEPT(InvalidParametersException, "Provided vertex size for stream " + toString(i) + " doesn't match meshes vertex size. Needed: " +
  212. toString(vertSize) + ". Got: " + toString(otherVertSize));
  213. }
  214. VertexBufferPtr vertexBuffer = mVertexData->getBuffer(i);
  215. UINT8* vertDest = mCPUVertexData[i] + vertChunkStart * vertSize;
  216. memcpy(vertDest, meshData->getStreamData(i), meshData->getNumVertices() * vertSize);
  217. if(vertexBuffer->vertexColorReqRGBFlip())
  218. {
  219. UINT32 vertexStride = mVertexDesc->getVertexStride(i);
  220. for(INT32 semanticIdx = 0; semanticIdx < VertexBuffer::MAX_SEMANTIC_IDX; semanticIdx++)
  221. {
  222. if(!mVertexDesc->hasElement(VES_COLOR, semanticIdx, i))
  223. continue;
  224. UINT8* colorData = vertDest + mVertexDesc->getElementOffsetFromStream(VES_COLOR, semanticIdx, i);
  225. for(UINT32 j = 0; j < mVertexData->vertexCount; j++)
  226. {
  227. UINT32* curColor = (UINT32*)colorData;
  228. (*curColor) = ((*curColor) & 0xFF00FF00) | ((*curColor >> 16) & 0x000000FF) | ((*curColor << 16) & 0x00FF0000);
  229. colorData += vertexStride;
  230. }
  231. }
  232. }
  233. vertexBuffer->writeData(vertChunkStart * vertSize, meshData->getNumVertices() * vertSize, vertDest, BufferWriteType::NoOverwrite);
  234. }
  235. UINT32 idxSize = mIndexBuffer->getIndexSize();
  236. // Ensure index sizes match
  237. if(meshData->getIndexElementSize() != idxSize)
  238. {
  239. BS_EXCEPT(InvalidParametersException, "Provided index size doesn't match meshes index size. Needed: " +
  240. toString(idxSize) + ". Got: " + toString(meshData->getIndexElementSize()));
  241. }
  242. UINT8* idxDest = mCPUIndexData + idxChunkStart * idxSize;
  243. memcpy(idxDest, meshData->getIndexData(), meshData->getNumIndices() * idxSize);
  244. mIndexBuffer->writeData(idxChunkStart * idxSize, meshData->getNumIndices() * idxSize, idxDest, BufferWriteType::NoOverwrite);
  245. }
  246. void MeshHeap::deallocInternal(TransientMeshPtr mesh)
  247. {
  248. auto findIter = mMeshAllocData.find(mesh->getMeshHeapId());
  249. assert(findIter != mMeshAllocData.end());
  250. AllocatedData& allocData = findIter->second;
  251. if(allocData.useFlags == UseFlags::GPUFree)
  252. {
  253. allocData.useFlags = UseFlags::Free;
  254. freeEventQuery(allocData.eventQueryIdx);
  255. mFreeVertChunks.push_back(allocData.vertChunkIdx);
  256. mFreeIdxChunks.push_back(allocData.idxChunkIdx);
  257. mergeWithNearbyChunks(allocData.vertChunkIdx, allocData.idxChunkIdx);
  258. mMeshAllocData.erase(findIter);
  259. }
  260. else if(allocData.useFlags == UseFlags::Used)
  261. allocData.useFlags = UseFlags::CPUFree;
  262. }
  263. void MeshHeap::growVertexBuffer(UINT32 numVertices)
  264. {
  265. mNumVertices = numVertices;
  266. mVertexData = std::shared_ptr<VertexData>(bs_new<VertexData, PoolAlloc>());
  267. mVertexData->vertexCount = mNumVertices;
  268. mVertexData->vertexDeclaration = mVertexDesc->createDeclaration();
  269. // Create buffers and copy data
  270. for(UINT32 i = 0; i <= mVertexDesc->getMaxStreamIdx(); i++)
  271. {
  272. if(!mVertexDesc->hasStream(i))
  273. continue;
  274. UINT32 vertSize = mVertexData->vertexDeclaration->getVertexSize(i);
  275. VertexBufferPtr vertexBuffer = HardwareBufferManager::instance().createVertexBuffer(
  276. vertSize, mVertexData->vertexCount, GBU_DYNAMIC);
  277. mVertexData->setBuffer(i, vertexBuffer);
  278. // Copy all data to the new buffer
  279. UINT8* oldBuffer = mCPUVertexData[i];
  280. UINT8* buffer = (UINT8*)bs_alloc(vertSize * numVertices);
  281. UINT32 destOffset = 0;
  282. if(oldBuffer != nullptr)
  283. {
  284. for(auto& allocData : mMeshAllocData)
  285. {
  286. ChunkData& oldChunk = mVertChunks[allocData.second.vertChunkIdx];
  287. UINT8* oldData = oldBuffer + oldChunk.start * vertSize;
  288. memcpy(buffer + destOffset * vertSize, oldData, oldChunk.size * vertSize);
  289. destOffset += oldChunk.size;
  290. }
  291. bs_free(oldBuffer);
  292. }
  293. if(destOffset > 0)
  294. vertexBuffer->writeData(0, destOffset * vertSize, buffer, BufferWriteType::NoOverwrite);
  295. mCPUVertexData[i] = buffer;
  296. }
  297. // Reorder chunks
  298. UINT32 destOffset = 0;
  299. Vector<ChunkData> newVertChunks;
  300. List<UINT32> freeVertChunks;
  301. for(auto& allocData : mMeshAllocData)
  302. {
  303. ChunkData& oldChunk = mVertChunks[allocData.second.vertChunkIdx];
  304. ChunkData newChunk;
  305. newChunk.start = destOffset;
  306. newChunk.size = oldChunk.size;
  307. allocData.second.vertChunkIdx = (UINT32)newVertChunks.size();
  308. newVertChunks.push_back(newChunk);
  309. destOffset += oldChunk.size;
  310. }
  311. // Add free chunk
  312. if(destOffset != mNumVertices)
  313. {
  314. ChunkData newChunk;
  315. newChunk.start = destOffset;
  316. newChunk.size = mNumVertices - destOffset;
  317. newVertChunks.push_back(newChunk);
  318. freeVertChunks.push_back((UINT32)(newVertChunks.size() - 1));
  319. }
  320. mVertChunks = newVertChunks;
  321. mFreeVertChunks = freeVertChunks;
  322. while(!mEmptyVertChunks.empty())
  323. mEmptyVertChunks.pop();
  324. }
  325. void MeshHeap::growIndexBuffer(UINT32 numIndices)
  326. {
  327. mNumIndices = numIndices;
  328. mIndexBuffer = HardwareBufferManager::instance().createIndexBuffer(mIndexType, mNumIndices, GBU_DYNAMIC);
  329. // Copy all data to the new buffer
  330. UINT32 idxSize = mIndexBuffer->getIndexSize();
  331. UINT8* oldBuffer = mCPUIndexData;
  332. UINT8* buffer = (UINT8*)bs_alloc(idxSize * numIndices);
  333. UINT32 destOffset = 0;
  334. if(oldBuffer != nullptr)
  335. {
  336. for(auto& allocData : mMeshAllocData)
  337. {
  338. ChunkData& oldChunk = mIdxChunks[allocData.second.idxChunkIdx];
  339. UINT8* oldData = oldBuffer + oldChunk.start * idxSize;
  340. memcpy(buffer + destOffset * idxSize, oldData, oldChunk.size * idxSize);
  341. destOffset += oldChunk.size;
  342. }
  343. bs_free(oldBuffer);
  344. }
  345. if(destOffset > 0)
  346. mIndexBuffer->writeData(0, destOffset * idxSize, buffer, BufferWriteType::NoOverwrite);
  347. mCPUIndexData = buffer;
  348. // Reorder chunks
  349. destOffset = 0;
  350. Vector<ChunkData> newIdxChunks;
  351. List<UINT32> freeIdxChunks;
  352. for(auto& allocData : mMeshAllocData)
  353. {
  354. ChunkData& oldChunk = mIdxChunks[allocData.second.idxChunkIdx];
  355. ChunkData newChunk;
  356. newChunk.start = destOffset;
  357. newChunk.size = oldChunk.size;
  358. allocData.second.idxChunkIdx = (UINT32)newIdxChunks.size();
  359. newIdxChunks.push_back(newChunk);
  360. destOffset += oldChunk.size;
  361. }
  362. // Add free chunk
  363. if(destOffset != mNumIndices)
  364. {
  365. ChunkData newChunk;
  366. newChunk.start = destOffset;
  367. newChunk.size = mNumIndices - destOffset;
  368. newIdxChunks.push_back(newChunk);
  369. freeIdxChunks.push_back((UINT32)(newIdxChunks.size() - 1));
  370. }
  371. mIdxChunks = newIdxChunks;
  372. mFreeIdxChunks = freeIdxChunks;
  373. while(!mEmptyIdxChunks.empty())
  374. mEmptyIdxChunks.pop();
  375. }
  376. UINT32 MeshHeap::createEventQuery()
  377. {
  378. UINT32 idx = 0;
  379. if(mFreeEventQueries.size() > 0)
  380. {
  381. idx = mFreeEventQueries.top();
  382. mFreeEventQueries.pop();
  383. }
  384. else
  385. {
  386. QueryData newQuery;
  387. newQuery.query = EventQuery::create();
  388. newQuery.queryId = 0;
  389. mEventQueries.push_back(newQuery);
  390. idx = (UINT32)(mEventQueries.size() - 1);
  391. }
  392. return idx;
  393. }
  394. void MeshHeap::freeEventQuery(UINT32 idx)
  395. {
  396. mEventQueries[idx].query->onTriggered.clear();
  397. mEventQueries[idx].queryId = 0;
  398. mFreeEventQueries.push(idx);
  399. }
  400. std::shared_ptr<VertexData> MeshHeap::_getVertexData() const
  401. {
  402. return mVertexData;
  403. }
  404. IndexBufferPtr MeshHeap::_getIndexBuffer() const
  405. {
  406. return mIndexBuffer;
  407. }
  408. UINT32 MeshHeap::getVertexOffset(UINT32 meshId) const
  409. {
  410. auto findIter = mMeshAllocData.find(meshId);
  411. assert(findIter != mMeshAllocData.end());
  412. UINT32 chunkIdx = findIter->second.vertChunkIdx;
  413. return mVertChunks[chunkIdx].start;
  414. }
  415. UINT32 MeshHeap::getIndexOffset(UINT32 meshId) const
  416. {
  417. auto findIter = mMeshAllocData.find(meshId);
  418. assert(findIter != mMeshAllocData.end());
  419. UINT32 chunkIdx = findIter->second.idxChunkIdx;
  420. return mIdxChunks[chunkIdx].start;
  421. }
  422. void MeshHeap::notifyUsedOnGPU(UINT32 meshId)
  423. {
  424. auto findIter = mMeshAllocData.find(meshId);
  425. assert(findIter != mMeshAllocData.end());
  426. AllocatedData& allocData = findIter->second;
  427. assert(allocData.useFlags != UseFlags::Free);
  428. if(allocData.useFlags == UseFlags::GPUFree)
  429. allocData.useFlags = UseFlags::Used;
  430. MeshHeapPtr thisPtr = std::static_pointer_cast<MeshHeap>(getThisPtr());
  431. QueryData& queryData = mEventQueries[allocData.eventQueryIdx];
  432. queryData.queryId = mNextQueryId++;
  433. queryData.query->onTriggered.clear();
  434. queryData.query->onTriggered.connect(std::bind(&MeshHeap::queryTriggered, thisPtr, meshId, queryData.queryId));
  435. queryData.query->begin();
  436. }
  437. // Note: Need to use a shared ptr here to ensure MeshHeap doesn't get deallocated sometime during this callback
  438. void MeshHeap::queryTriggered(MeshHeapPtr thisPtr, UINT32 meshId, UINT32 queryId)
  439. {
  440. auto findIter = thisPtr->mMeshAllocData.find(meshId);
  441. assert(findIter != thisPtr->mMeshAllocData.end());
  442. AllocatedData& allocData = findIter->second;
  443. // If query ids don't match then it means there either a more recent query or
  444. // the buffer was discarded and we are not interested in query result
  445. QueryData& queryData = thisPtr->mEventQueries[allocData.eventQueryIdx];
  446. if(queryId == queryData.queryId)
  447. {
  448. assert(allocData.useFlags != UseFlags::Free && allocData.useFlags != UseFlags::GPUFree);
  449. if(allocData.useFlags == UseFlags::CPUFree)
  450. {
  451. allocData.useFlags = UseFlags::Free;
  452. thisPtr->freeEventQuery(allocData.eventQueryIdx);
  453. thisPtr->mFreeVertChunks.push_back(allocData.vertChunkIdx);
  454. thisPtr->mFreeIdxChunks.push_back(allocData.idxChunkIdx);
  455. thisPtr->mergeWithNearbyChunks(allocData.vertChunkIdx, allocData.idxChunkIdx);
  456. thisPtr->mMeshAllocData.erase(findIter);
  457. }
  458. else
  459. allocData.useFlags = UseFlags::GPUFree;
  460. }
  461. queryData.query->onTriggered.clear();
  462. }
  463. void MeshHeap::mergeWithNearbyChunks(UINT32 chunkVertIdx, UINT32 chunkIdxIdx)
  464. {
  465. // Merge vertex chunks
  466. ChunkData& vertChunk = mVertChunks[chunkVertIdx];
  467. for(auto& freeChunkIdx : mFreeVertChunks)
  468. {
  469. if(chunkVertIdx == freeChunkIdx)
  470. continue;
  471. ChunkData& curChunk = mVertChunks[freeChunkIdx];
  472. if(curChunk.size == 0) // Already merged
  473. continue;
  474. bool merged = false;
  475. if(curChunk.start == (vertChunk.start + vertChunk.size))
  476. {
  477. vertChunk.size += curChunk.size;
  478. merged = true;
  479. }
  480. else if((curChunk.start + curChunk.size) == vertChunk.start)
  481. {
  482. vertChunk.start = curChunk.start;
  483. vertChunk.size += curChunk.size;
  484. merged = true;
  485. }
  486. if(merged)
  487. {
  488. // We can't remove the chunk since that would break the indexing scheme, so
  489. // mark it as empty and set size to 0. It will be reused when needed.
  490. curChunk.start = 0;
  491. curChunk.size = 0;
  492. mEmptyVertChunks.push(freeChunkIdx);
  493. }
  494. }
  495. // Merge index chunks
  496. ChunkData& idxChunk = mIdxChunks[chunkIdxIdx];
  497. for(auto& freeChunkIdx : mFreeIdxChunks)
  498. {
  499. if(chunkIdxIdx == freeChunkIdx)
  500. continue;
  501. ChunkData& curChunk = mIdxChunks[freeChunkIdx];
  502. if(curChunk.size == 0) // Already merged
  503. continue;
  504. bool merged = false;
  505. if(curChunk.start == (idxChunk.start + idxChunk.size))
  506. {
  507. idxChunk.size += curChunk.size;
  508. merged = true;
  509. }
  510. else if((curChunk.start + curChunk.size) == idxChunk.start)
  511. {
  512. idxChunk.start = curChunk.start;
  513. idxChunk.size += curChunk.size;
  514. merged = true;
  515. }
  516. if(merged)
  517. {
  518. // We can't remove the chunk since that would break the indexing scheme, so
  519. // mark it as empty and set size to 0. It will be reused when needed.
  520. curChunk.start = 0;
  521. curChunk.size = 0;
  522. mEmptyIdxChunks.push(freeChunkIdx);
  523. }
  524. }
  525. }
  526. }