| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307 |
- //********************************** Banshee Engine (www.banshee3d.com) **************************************************//
- //**************** Copyright (c) 2016 Marko Pintera ([email protected]). All rights reserved. **********************//
- #pragma once
- #include "Prerequisites/BsPrerequisitesUtil.h"
- #include "Math/BsVector3.h"
- namespace bs
- {
- /** @addtogroup Math
- * @{
- */
- /** A 3x3 matrix. Can be used for non-homogenous transformations of three dimensional vectors and points. */
- class BS_UTILITY_EXPORT Matrix3
- {
- private:
- struct EulerAngleOrderData
- {
- int a, b, c;
- float sign;
- };
- public:
- Matrix3() {}
- Matrix3(BS_ZERO zero)
- :Matrix3(Matrix3::ZERO)
- { }
- Matrix3(BS_IDENTITY identity)
- :Matrix3(Matrix3::IDENTITY)
- { }
- Matrix3(const Matrix3& mat)
- {
- memcpy(m, mat.m, 9*sizeof(float));
- }
- Matrix3(float m00, float m01, float m02,
- float m10, float m11, float m12,
- float m20, float m21, float m22)
- {
- m[0][0] = m00;
- m[0][1] = m01;
- m[0][2] = m02;
- m[1][0] = m10;
- m[1][1] = m11;
- m[1][2] = m12;
- m[2][0] = m20;
- m[2][1] = m21;
- m[2][2] = m22;
- }
- /** Construct a matrix from a quaternion. */
- explicit Matrix3(const Quaternion& rotation)
- {
- fromQuaternion(rotation);
- }
- /** Construct a matrix that performs rotation and scale. */
- explicit Matrix3(const Quaternion& rotation, const Vector3& scale)
- {
- fromQuaternion(rotation);
-
- for (int row = 0; row < 3; row++)
- {
- for (int col = 0; col < 3; col++)
- m[row][col] = scale[row]*m[row][col];
- }
- }
- /** Construct a matrix from an angle/axis pair. */
- explicit Matrix3(const Vector3& axis, const Radian& angle)
- {
- fromAxisAngle(axis, angle);
- }
- /** Construct a matrix from 3 orthonormal local axes. */
- explicit Matrix3(const Vector3& xaxis, const Vector3& yaxis, const Vector3& zaxis)
- {
- fromAxes(xaxis, yaxis, zaxis);
- }
- /**
- * Construct a matrix from euler angles, YXZ ordering.
- *
- * @see Matrix3::fromEulerAngles
- */
- explicit Matrix3(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle)
- {
- fromEulerAngles(xAngle, yAngle, zAngle);
- }
- /**
- * Construct a matrix from euler angles, custom ordering.
- *
- * @see Matrix3::fromEulerAngles
- */
- explicit Matrix3(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle, EulerAngleOrder order)
- {
- fromEulerAngles(xAngle, yAngle, zAngle, order);
- }
- /** Swaps the contents of this matrix with another. */
- void swap(Matrix3& other)
- {
- std::swap(m[0][0], other.m[0][0]);
- std::swap(m[0][1], other.m[0][1]);
- std::swap(m[0][2], other.m[0][2]);
- std::swap(m[1][0], other.m[1][0]);
- std::swap(m[1][1], other.m[1][1]);
- std::swap(m[1][2], other.m[1][2]);
- std::swap(m[2][0], other.m[2][0]);
- std::swap(m[2][1], other.m[2][1]);
- std::swap(m[2][2], other.m[2][2]);
- }
- /** Returns a row of the matrix. */
- float* operator[] (UINT32 row) const
- {
- assert(row < 3);
- return (float*)m[row];
- }
- Vector3 getColumn(UINT32 col) const;
- void setColumn(UINT32 col, const Vector3& vec);
- Matrix3& operator= (const Matrix3& rhs)
- {
- memcpy(m, rhs.m, 9*sizeof(float));
- return *this;
- }
- bool operator== (const Matrix3& rhs) const;
- bool operator!= (const Matrix3& rhs) const;
- Matrix3 operator+ (const Matrix3& rhs) const;
- Matrix3 operator- (const Matrix3& rhs) const;
- Matrix3 operator* (const Matrix3& rhs) const;
- Matrix3 operator- () const;
- Matrix3 operator* (float rhs) const;
- friend Matrix3 operator* (float lhs, const Matrix3& rhs);
- /** Transforms the given vector by this matrix and returns the newly transformed vector. */
- Vector3 transform(const Vector3& vec) const;
- /** Returns a transpose of the matrix (switched columns and rows). */
- Matrix3 transpose () const;
- /**
- * Calculates an inverse of the matrix if it exists.
- *
- * @param[out] mat Resulting matrix inverse.
- * @param[in] fTolerance (optional) Tolerance to use when checking if determinant is zero (or near zero in this case).
- * Zero determinant means inverse doesn't exist.
- * @return True if inverse exists, false otherwise.
- */
- bool inverse(Matrix3& mat, float fTolerance = 1e-06f) const;
- /**
- * Calculates an inverse of the matrix if it exists.
- *
- * @param[in] fTolerance (optional) Tolerance to use when checking if determinant is zero (or near zero in this case).
- * Zero determinant means inverse doesn't exist.
- *
- * @return Resulting matrix inverse if it exists, otherwise a zero matrix.
- */
- Matrix3 inverse(float fTolerance = 1e-06f) const;
- /** Calculates the matrix determinant. */
- float determinant() const;
- /**
- * Decompose a Matrix3 to rotation and scale.
- *
- * @note
- * Matrix must consist only of rotation and uniform scale transformations, otherwise accurate results are not
- * guaranteed. Applying non-uniform scale guarantees rotation portion will not be accurate.
- */
- void decomposition(Quaternion& rotation, Vector3& scale) const;
- /**
- * Decomposes the matrix into various useful values.
- *
- * @param[out] matL Unitary matrix. Columns form orthonormal bases. If your matrix is affine and
- * doesn't use non-uniform scaling this matrix will be a conjugate transpose of the rotation part of the matrix.
- * @param[out] matS Singular values of the matrix. If your matrix is affine these will be scaling factors of the matrix.
- * @param[out] matR Unitary matrix. Columns form orthonormal bases. If your matrix is affine and
- * doesn't use non-uniform scaling this matrix will be the rotation part of the matrix.
- */
- void singularValueDecomposition(Matrix3& matL, Vector3& matS, Matrix3& matR) const;
- /**
- * Decomposes the matrix into a set of values.
- *
- * @param[out] matQ Columns form orthonormal bases. If your matrix is affine and
- * doesn't use non-uniform scaling this matrix will be the rotation part of the matrix.
- * @param[out] vecD If the matrix is affine these will be scaling factors of the matrix.
- * @param[out] vecU If the matrix is affine these will be shear factors of the matrix.
- */
- void QDUDecomposition(Matrix3& matQ, Vector3& vecD, Vector3& vecU) const;
- /** Gram-Schmidt orthonormalization (applied to columns of rotation matrix) */
- void orthonormalize();
- /**
- * Converts an orthonormal matrix to axis angle representation.
- *
- * @note Matrix must be orthonormal.
- */
- void toAxisAngle(Vector3& axis, Radian& angle) const;
- /** Creates a rotation matrix from an axis angle representation. */
- void fromAxisAngle(const Vector3& axis, const Radian& angle);
- /**
- * Converts an orthonormal matrix to quaternion representation.
- *
- * @note Matrix must be orthonormal.
- */
- void toQuaternion(Quaternion& quat) const;
- /** Creates a rotation matrix from a quaternion representation. */
- void fromQuaternion(const Quaternion& quat);
- /** Creates a matrix from a three axes. */
- void fromAxes(const Vector3& xAxis, const Vector3& yAxis, const Vector3& zAxis);
- /**
- * Converts an orthonormal matrix to euler angle (pitch/yaw/roll) representation.
- *
- * @param[in,out] xAngle Rotation about x axis. (AKA Pitch)
- * @param[in,out] yAngle Rotation about y axis. (AKA Yaw)
- * @param[in,out] zAngle Rotation about z axis. (AKA Roll)
- * @return True if unique solution was found, false otherwise.
- *
- * @note Matrix must be orthonormal.
- */
- bool toEulerAngles(Radian& xAngle, Radian& yAngle, Radian& zAngle) const;
- /**
- * Creates a rotation matrix from the provided Pitch/Yaw/Roll angles.
- *
- * @param[in] xAngle Rotation about x axis. (AKA Pitch)
- * @param[in] yAngle Rotation about y axis. (AKA Yaw)
- * @param[in] zAngle Rotation about z axis. (AKA Roll)
- *
- * @note Matrix must be orthonormal.
- * Since different values will be produced depending in which order are the rotations applied, this method assumes
- * they are applied in YXZ order. If you need a specific order, use the overloaded "fromEulerAngles" method instead.
- */
- void fromEulerAngles(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle);
- /**
- * Creates a rotation matrix from the provided Pitch/Yaw/Roll angles.
- *
- * @param[in] xAngle Rotation about x axis. (AKA Pitch)
- * @param[in] yAngle Rotation about y axis. (AKA Yaw)
- * @param[in] zAngle Rotation about z axis. (AKA Roll)
- * @param[in] order The order in which rotations will be applied.
- * Different rotations can be created depending on the order.
- *
- * @note Matrix must be orthonormal.
- */
- void fromEulerAngles(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle, EulerAngleOrder order);
- /**
- * Eigensolver, matrix must be symmetric.
- *
- * @note
- * Eigenvectors are vectors which when transformed by the matrix, only change in magnitude, but not in direction.
- * Eigenvalue is that magnitude. In other words you will get the same result whether you multiply the vector by the
- * matrix or by its eigenvalue.
- */
- void eigenSolveSymmetric(float eigenValues[3], Vector3 eigenVectors[3]) const;
- static const float EPSILON;
- static const Matrix3 ZERO;
- static const Matrix3 IDENTITY;
- protected:
- friend class Matrix4;
- // Support for eigensolver
- void tridiagonal (float diag[3], float subDiag[3]);
- bool QLAlgorithm (float diag[3], float subDiag[3]);
- // Support for singular value decomposition
- static const float SVD_EPSILON;
- static const unsigned int SVD_MAX_ITERS;
- static void bidiagonalize (Matrix3& matA, Matrix3& matL, Matrix3& matR);
- static void golubKahanStep (Matrix3& matA, Matrix3& matL, Matrix3& matR);
- // Euler angle conversions
- static const EulerAngleOrderData EA_LOOKUP[6];
- float m[3][3];
- };
- /** @} */
- /** @cond SPECIALIZATIONS */
- BS_ALLOW_MEMCPY_SERIALIZATION(Matrix3);
- /** @endcond */
- }
|