| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274 |
- /*
- -----------------------------------------------------------------------------
- This source file is part of OGRE
- (Object-oriented Graphics Rendering Engine)
- For the latest info, see http://www.ogre3d.org/
- Copyright (c) 2000-2011 Torus Knot Software Ltd
- Permission is hereby granted, free of charge, to any person obtaining a copy
- of this software and associated documentation files (the "Software"), to deal
- in the Software without restriction, including without limitation the rights
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- copies of the Software, and to permit persons to whom the Software is
- furnished to do so, subject to the following conditions:
- The above copyright notice and this permission notice shall be included in
- all copies or substantial portions of the Software.
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- THE SOFTWARE.
- -----------------------------------------------------------------------------
- */
- #include "CmMatrix4.h"
- #include "CmVector3.h"
- #include "CmMatrix3.h"
- namespace CamelotFramework
- {
- const Matrix4 Matrix4::ZERO(
- 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f);
- const Matrix4 Matrix4::IDENTITY(
- 1.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 1.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 1.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 1.0f);
- static float MINOR(const Matrix4& m, const size_t r0, const size_t r1, const size_t r2,
- const size_t c0, const size_t c1, const size_t c2)
- {
- return m[r0][c0] * (m[r1][c1] * m[r2][c2] - m[r2][c1] * m[r1][c2]) -
- m[r0][c1] * (m[r1][c0] * m[r2][c2] - m[r2][c0] * m[r1][c2]) +
- m[r0][c2] * (m[r1][c0] * m[r2][c1] - m[r2][c0] * m[r1][c1]);
- }
- Matrix4 Matrix4::adjoint() const
- {
- return Matrix4( MINOR(*this, 1, 2, 3, 1, 2, 3),
- -MINOR(*this, 0, 2, 3, 1, 2, 3),
- MINOR(*this, 0, 1, 3, 1, 2, 3),
- -MINOR(*this, 0, 1, 2, 1, 2, 3),
- -MINOR(*this, 1, 2, 3, 0, 2, 3),
- MINOR(*this, 0, 2, 3, 0, 2, 3),
- -MINOR(*this, 0, 1, 3, 0, 2, 3),
- MINOR(*this, 0, 1, 2, 0, 2, 3),
- MINOR(*this, 1, 2, 3, 0, 1, 3),
- -MINOR(*this, 0, 2, 3, 0, 1, 3),
- MINOR(*this, 0, 1, 3, 0, 1, 3),
- -MINOR(*this, 0, 1, 2, 0, 1, 3),
- -MINOR(*this, 1, 2, 3, 0, 1, 2),
- MINOR(*this, 0, 2, 3, 0, 1, 2),
- -MINOR(*this, 0, 1, 3, 0, 1, 2),
- MINOR(*this, 0, 1, 2, 0, 1, 2));
- }
- float Matrix4::determinant() const
- {
- return m[0][0] * MINOR(*this, 1, 2, 3, 1, 2, 3) -
- m[0][1] * MINOR(*this, 1, 2, 3, 0, 2, 3) +
- m[0][2] * MINOR(*this, 1, 2, 3, 0, 1, 3) -
- m[0][3] * MINOR(*this, 1, 2, 3, 0, 1, 2);
- }
- Matrix4 Matrix4::inverse() const
- {
- float m00 = m[0][0], m01 = m[0][1], m02 = m[0][2], m03 = m[0][3];
- float m10 = m[1][0], m11 = m[1][1], m12 = m[1][2], m13 = m[1][3];
- float m20 = m[2][0], m21 = m[2][1], m22 = m[2][2], m23 = m[2][3];
- float m30 = m[3][0], m31 = m[3][1], m32 = m[3][2], m33 = m[3][3];
- float v0 = m20 * m31 - m21 * m30;
- float v1 = m20 * m32 - m22 * m30;
- float v2 = m20 * m33 - m23 * m30;
- float v3 = m21 * m32 - m22 * m31;
- float v4 = m21 * m33 - m23 * m31;
- float v5 = m22 * m33 - m23 * m32;
- float t00 = + (v5 * m11 - v4 * m12 + v3 * m13);
- float t10 = - (v5 * m10 - v2 * m12 + v1 * m13);
- float t20 = + (v4 * m10 - v2 * m11 + v0 * m13);
- float t30 = - (v3 * m10 - v1 * m11 + v0 * m12);
- float invDet = 1 / (t00 * m00 + t10 * m01 + t20 * m02 + t30 * m03);
- float d00 = t00 * invDet;
- float d10 = t10 * invDet;
- float d20 = t20 * invDet;
- float d30 = t30 * invDet;
- float d01 = - (v5 * m01 - v4 * m02 + v3 * m03) * invDet;
- float d11 = + (v5 * m00 - v2 * m02 + v1 * m03) * invDet;
- float d21 = - (v4 * m00 - v2 * m01 + v0 * m03) * invDet;
- float d31 = + (v3 * m00 - v1 * m01 + v0 * m02) * invDet;
- v0 = m10 * m31 - m11 * m30;
- v1 = m10 * m32 - m12 * m30;
- v2 = m10 * m33 - m13 * m30;
- v3 = m11 * m32 - m12 * m31;
- v4 = m11 * m33 - m13 * m31;
- v5 = m12 * m33 - m13 * m32;
- float d02 = + (v5 * m01 - v4 * m02 + v3 * m03) * invDet;
- float d12 = - (v5 * m00 - v2 * m02 + v1 * m03) * invDet;
- float d22 = + (v4 * m00 - v2 * m01 + v0 * m03) * invDet;
- float d32 = - (v3 * m00 - v1 * m01 + v0 * m02) * invDet;
- v0 = m21 * m10 - m20 * m11;
- v1 = m22 * m10 - m20 * m12;
- v2 = m23 * m10 - m20 * m13;
- v3 = m22 * m11 - m21 * m12;
- v4 = m23 * m11 - m21 * m13;
- v5 = m23 * m12 - m22 * m13;
- float d03 = - (v5 * m01 - v4 * m02 + v3 * m03) * invDet;
- float d13 = + (v5 * m00 - v2 * m02 + v1 * m03) * invDet;
- float d23 = - (v4 * m00 - v2 * m01 + v0 * m03) * invDet;
- float d33 = + (v3 * m00 - v1 * m01 + v0 * m02) * invDet;
- return Matrix4(
- d00, d01, d02, d03,
- d10, d11, d12, d13,
- d20, d21, d22, d23,
- d30, d31, d32, d33);
- }
- Matrix4 Matrix4::inverseAffine() const
- {
- assert(isAffine());
- float m10 = m[1][0], m11 = m[1][1], m12 = m[1][2];
- float m20 = m[2][0], m21 = m[2][1], m22 = m[2][2];
- float t00 = m22 * m11 - m21 * m12;
- float t10 = m20 * m12 - m22 * m10;
- float t20 = m21 * m10 - m20 * m11;
- float m00 = m[0][0], m01 = m[0][1], m02 = m[0][2];
- float invDet = 1 / (m00 * t00 + m01 * t10 + m02 * t20);
- t00 *= invDet; t10 *= invDet; t20 *= invDet;
- m00 *= invDet; m01 *= invDet; m02 *= invDet;
- float r00 = t00;
- float r01 = m02 * m21 - m01 * m22;
- float r02 = m01 * m12 - m02 * m11;
- float r10 = t10;
- float r11 = m00 * m22 - m02 * m20;
- float r12 = m02 * m10 - m00 * m12;
- float r20 = t20;
- float r21 = m01 * m20 - m00 * m21;
- float r22 = m00 * m11 - m01 * m10;
- float m03 = m[0][3], m13 = m[1][3], m23 = m[2][3];
- float r03 = - (r00 * m03 + r01 * m13 + r02 * m23);
- float r13 = - (r10 * m03 + r11 * m13 + r12 * m23);
- float r23 = - (r20 * m03 + r21 * m13 + r22 * m23);
- return Matrix4(
- r00, r01, r02, r03,
- r10, r11, r12, r13,
- r20, r21, r22, r23,
- 0, 0, 0, 1);
- }
- void Matrix4::setTRS(const Vector3& translation, const Quaternion& rotation, const Vector3& scale)
- {
- Matrix3 rot3x3;
- rotation.toRotationMatrix(rot3x3);
- m[0][0] = scale.x * rot3x3[0][0]; m[0][1] = scale.y * rot3x3[0][1]; m[0][2] = scale.z * rot3x3[0][2]; m[0][3] = translation.x;
- m[1][0] = scale.x * rot3x3[1][0]; m[1][1] = scale.y * rot3x3[1][1]; m[1][2] = scale.z * rot3x3[1][2]; m[1][3] = translation.y;
- m[2][0] = scale.x * rot3x3[2][0]; m[2][1] = scale.y * rot3x3[2][1]; m[2][2] = scale.z * rot3x3[2][2]; m[2][3] = translation.z;
- // No projection term
- m[3][0] = 0; m[3][1] = 0; m[3][2] = 0; m[3][3] = 1;
- }
- void Matrix4::setInverseTRS(const Vector3& translation, const Quaternion& rotation, const Vector3& scale)
- {
- // Invert the parameters
- Vector3 invTranslate = -translation;
- Vector3 invScale(1 / scale.x, 1 / scale.y, 1 / scale.z);
- Quaternion invRot = rotation.inverse();
- // Because we're inverting, order is translation, rotation, scale
- // So make translation relative to scale & rotation
- invTranslate = invRot.rotate(invTranslate);
- invTranslate *= invScale;
- // Next, make a 3x3 rotation matrix
- Matrix3 rot3x3;
- invRot.toRotationMatrix(rot3x3);
- // Set up final matrix with scale, rotation and translation
- m[0][0] = invScale.x * rot3x3[0][0]; m[0][1] = invScale.x * rot3x3[0][1]; m[0][2] = invScale.x * rot3x3[0][2]; m[0][3] = invTranslate.x;
- m[1][0] = invScale.y * rot3x3[1][0]; m[1][1] = invScale.y * rot3x3[1][1]; m[1][2] = invScale.y * rot3x3[1][2]; m[1][3] = invTranslate.y;
- m[2][0] = invScale.z * rot3x3[2][0]; m[2][1] = invScale.z * rot3x3[2][1]; m[2][2] = invScale.z * rot3x3[2][2]; m[2][3] = invTranslate.z;
- // No projection term
- m[3][0] = 0; m[3][1] = 0; m[3][2] = 0; m[3][3] = 1;
- }
- void Matrix4::decomposition(Vector3& position, Quaternion& rotation, Vector3& scale) const
- {
- Matrix3 m3x3;
- extract3x3Matrix(m3x3);
- Matrix3 matQ;
- Vector3 vecU;
- m3x3.QDUDecomposition(matQ, scale, vecU);
- rotation = Quaternion(matQ);
- position = Vector3(m[0][3], m[1][3], m[2][3]);
- }
- void Matrix4::makeView(const Vector3& position, const Quaternion& orientation, const Matrix4* reflectMatrix)
- {
- // View matrix is:
- //
- // [ Lx Uy Dz Tx ]
- // [ Lx Uy Dz Ty ]
- // [ Lx Uy Dz Tz ]
- // [ 0 0 0 1 ]
- //
- // Where T = -(Transposed(Rot) * Pos)
- // This is most efficiently done using 3x3 Matrices
- Matrix3 rot;
- orientation.toRotationMatrix(rot);
- // Make the translation relative to new axes
- Matrix3 rotT = rot.transpose();
- Vector3 trans = (-rotT).transform(position);
- // Make final matrix
- *this = Matrix4(rotT);
- m[0][3] = trans.x;
- m[1][3] = trans.y;
- m[2][3] = trans.z;
- // Deal with reflections
- if (reflectMatrix)
- {
- *this = (*this) * (*reflectMatrix);
- }
- }
- }
|