CmMatrix4.cpp 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274
  1. /*
  2. -----------------------------------------------------------------------------
  3. This source file is part of OGRE
  4. (Object-oriented Graphics Rendering Engine)
  5. For the latest info, see http://www.ogre3d.org/
  6. Copyright (c) 2000-2011 Torus Knot Software Ltd
  7. Permission is hereby granted, free of charge, to any person obtaining a copy
  8. of this software and associated documentation files (the "Software"), to deal
  9. in the Software without restriction, including without limitation the rights
  10. to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  11. copies of the Software, and to permit persons to whom the Software is
  12. furnished to do so, subject to the following conditions:
  13. The above copyright notice and this permission notice shall be included in
  14. all copies or substantial portions of the Software.
  15. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. THE SOFTWARE.
  22. -----------------------------------------------------------------------------
  23. */
  24. #include "CmMatrix4.h"
  25. #include "CmVector3.h"
  26. #include "CmMatrix3.h"
  27. namespace CamelotFramework
  28. {
  29. const Matrix4 Matrix4::ZERO(
  30. 0.0f, 0.0f, 0.0f, 0.0f,
  31. 0.0f, 0.0f, 0.0f, 0.0f,
  32. 0.0f, 0.0f, 0.0f, 0.0f,
  33. 0.0f, 0.0f, 0.0f, 0.0f);
  34. const Matrix4 Matrix4::IDENTITY(
  35. 1.0f, 0.0f, 0.0f, 0.0f,
  36. 0.0f, 1.0f, 0.0f, 0.0f,
  37. 0.0f, 0.0f, 1.0f, 0.0f,
  38. 0.0f, 0.0f, 0.0f, 1.0f);
  39. static float MINOR(const Matrix4& m, const size_t r0, const size_t r1, const size_t r2,
  40. const size_t c0, const size_t c1, const size_t c2)
  41. {
  42. return m[r0][c0] * (m[r1][c1] * m[r2][c2] - m[r2][c1] * m[r1][c2]) -
  43. m[r0][c1] * (m[r1][c0] * m[r2][c2] - m[r2][c0] * m[r1][c2]) +
  44. m[r0][c2] * (m[r1][c0] * m[r2][c1] - m[r2][c0] * m[r1][c1]);
  45. }
  46. Matrix4 Matrix4::adjoint() const
  47. {
  48. return Matrix4( MINOR(*this, 1, 2, 3, 1, 2, 3),
  49. -MINOR(*this, 0, 2, 3, 1, 2, 3),
  50. MINOR(*this, 0, 1, 3, 1, 2, 3),
  51. -MINOR(*this, 0, 1, 2, 1, 2, 3),
  52. -MINOR(*this, 1, 2, 3, 0, 2, 3),
  53. MINOR(*this, 0, 2, 3, 0, 2, 3),
  54. -MINOR(*this, 0, 1, 3, 0, 2, 3),
  55. MINOR(*this, 0, 1, 2, 0, 2, 3),
  56. MINOR(*this, 1, 2, 3, 0, 1, 3),
  57. -MINOR(*this, 0, 2, 3, 0, 1, 3),
  58. MINOR(*this, 0, 1, 3, 0, 1, 3),
  59. -MINOR(*this, 0, 1, 2, 0, 1, 3),
  60. -MINOR(*this, 1, 2, 3, 0, 1, 2),
  61. MINOR(*this, 0, 2, 3, 0, 1, 2),
  62. -MINOR(*this, 0, 1, 3, 0, 1, 2),
  63. MINOR(*this, 0, 1, 2, 0, 1, 2));
  64. }
  65. float Matrix4::determinant() const
  66. {
  67. return m[0][0] * MINOR(*this, 1, 2, 3, 1, 2, 3) -
  68. m[0][1] * MINOR(*this, 1, 2, 3, 0, 2, 3) +
  69. m[0][2] * MINOR(*this, 1, 2, 3, 0, 1, 3) -
  70. m[0][3] * MINOR(*this, 1, 2, 3, 0, 1, 2);
  71. }
  72. Matrix4 Matrix4::inverse() const
  73. {
  74. float m00 = m[0][0], m01 = m[0][1], m02 = m[0][2], m03 = m[0][3];
  75. float m10 = m[1][0], m11 = m[1][1], m12 = m[1][2], m13 = m[1][3];
  76. float m20 = m[2][0], m21 = m[2][1], m22 = m[2][2], m23 = m[2][3];
  77. float m30 = m[3][0], m31 = m[3][1], m32 = m[3][2], m33 = m[3][3];
  78. float v0 = m20 * m31 - m21 * m30;
  79. float v1 = m20 * m32 - m22 * m30;
  80. float v2 = m20 * m33 - m23 * m30;
  81. float v3 = m21 * m32 - m22 * m31;
  82. float v4 = m21 * m33 - m23 * m31;
  83. float v5 = m22 * m33 - m23 * m32;
  84. float t00 = + (v5 * m11 - v4 * m12 + v3 * m13);
  85. float t10 = - (v5 * m10 - v2 * m12 + v1 * m13);
  86. float t20 = + (v4 * m10 - v2 * m11 + v0 * m13);
  87. float t30 = - (v3 * m10 - v1 * m11 + v0 * m12);
  88. float invDet = 1 / (t00 * m00 + t10 * m01 + t20 * m02 + t30 * m03);
  89. float d00 = t00 * invDet;
  90. float d10 = t10 * invDet;
  91. float d20 = t20 * invDet;
  92. float d30 = t30 * invDet;
  93. float d01 = - (v5 * m01 - v4 * m02 + v3 * m03) * invDet;
  94. float d11 = + (v5 * m00 - v2 * m02 + v1 * m03) * invDet;
  95. float d21 = - (v4 * m00 - v2 * m01 + v0 * m03) * invDet;
  96. float d31 = + (v3 * m00 - v1 * m01 + v0 * m02) * invDet;
  97. v0 = m10 * m31 - m11 * m30;
  98. v1 = m10 * m32 - m12 * m30;
  99. v2 = m10 * m33 - m13 * m30;
  100. v3 = m11 * m32 - m12 * m31;
  101. v4 = m11 * m33 - m13 * m31;
  102. v5 = m12 * m33 - m13 * m32;
  103. float d02 = + (v5 * m01 - v4 * m02 + v3 * m03) * invDet;
  104. float d12 = - (v5 * m00 - v2 * m02 + v1 * m03) * invDet;
  105. float d22 = + (v4 * m00 - v2 * m01 + v0 * m03) * invDet;
  106. float d32 = - (v3 * m00 - v1 * m01 + v0 * m02) * invDet;
  107. v0 = m21 * m10 - m20 * m11;
  108. v1 = m22 * m10 - m20 * m12;
  109. v2 = m23 * m10 - m20 * m13;
  110. v3 = m22 * m11 - m21 * m12;
  111. v4 = m23 * m11 - m21 * m13;
  112. v5 = m23 * m12 - m22 * m13;
  113. float d03 = - (v5 * m01 - v4 * m02 + v3 * m03) * invDet;
  114. float d13 = + (v5 * m00 - v2 * m02 + v1 * m03) * invDet;
  115. float d23 = - (v4 * m00 - v2 * m01 + v0 * m03) * invDet;
  116. float d33 = + (v3 * m00 - v1 * m01 + v0 * m02) * invDet;
  117. return Matrix4(
  118. d00, d01, d02, d03,
  119. d10, d11, d12, d13,
  120. d20, d21, d22, d23,
  121. d30, d31, d32, d33);
  122. }
  123. Matrix4 Matrix4::inverseAffine() const
  124. {
  125. assert(isAffine());
  126. float m10 = m[1][0], m11 = m[1][1], m12 = m[1][2];
  127. float m20 = m[2][0], m21 = m[2][1], m22 = m[2][2];
  128. float t00 = m22 * m11 - m21 * m12;
  129. float t10 = m20 * m12 - m22 * m10;
  130. float t20 = m21 * m10 - m20 * m11;
  131. float m00 = m[0][0], m01 = m[0][1], m02 = m[0][2];
  132. float invDet = 1 / (m00 * t00 + m01 * t10 + m02 * t20);
  133. t00 *= invDet; t10 *= invDet; t20 *= invDet;
  134. m00 *= invDet; m01 *= invDet; m02 *= invDet;
  135. float r00 = t00;
  136. float r01 = m02 * m21 - m01 * m22;
  137. float r02 = m01 * m12 - m02 * m11;
  138. float r10 = t10;
  139. float r11 = m00 * m22 - m02 * m20;
  140. float r12 = m02 * m10 - m00 * m12;
  141. float r20 = t20;
  142. float r21 = m01 * m20 - m00 * m21;
  143. float r22 = m00 * m11 - m01 * m10;
  144. float m03 = m[0][3], m13 = m[1][3], m23 = m[2][3];
  145. float r03 = - (r00 * m03 + r01 * m13 + r02 * m23);
  146. float r13 = - (r10 * m03 + r11 * m13 + r12 * m23);
  147. float r23 = - (r20 * m03 + r21 * m13 + r22 * m23);
  148. return Matrix4(
  149. r00, r01, r02, r03,
  150. r10, r11, r12, r13,
  151. r20, r21, r22, r23,
  152. 0, 0, 0, 1);
  153. }
  154. void Matrix4::setTRS(const Vector3& translation, const Quaternion& rotation, const Vector3& scale)
  155. {
  156. Matrix3 rot3x3;
  157. rotation.toRotationMatrix(rot3x3);
  158. m[0][0] = scale.x * rot3x3[0][0]; m[0][1] = scale.y * rot3x3[0][1]; m[0][2] = scale.z * rot3x3[0][2]; m[0][3] = translation.x;
  159. m[1][0] = scale.x * rot3x3[1][0]; m[1][1] = scale.y * rot3x3[1][1]; m[1][2] = scale.z * rot3x3[1][2]; m[1][3] = translation.y;
  160. m[2][0] = scale.x * rot3x3[2][0]; m[2][1] = scale.y * rot3x3[2][1]; m[2][2] = scale.z * rot3x3[2][2]; m[2][3] = translation.z;
  161. // No projection term
  162. m[3][0] = 0; m[3][1] = 0; m[3][2] = 0; m[3][3] = 1;
  163. }
  164. void Matrix4::setInverseTRS(const Vector3& translation, const Quaternion& rotation, const Vector3& scale)
  165. {
  166. // Invert the parameters
  167. Vector3 invTranslate = -translation;
  168. Vector3 invScale(1 / scale.x, 1 / scale.y, 1 / scale.z);
  169. Quaternion invRot = rotation.inverse();
  170. // Because we're inverting, order is translation, rotation, scale
  171. // So make translation relative to scale & rotation
  172. invTranslate = invRot.rotate(invTranslate);
  173. invTranslate *= invScale;
  174. // Next, make a 3x3 rotation matrix
  175. Matrix3 rot3x3;
  176. invRot.toRotationMatrix(rot3x3);
  177. // Set up final matrix with scale, rotation and translation
  178. m[0][0] = invScale.x * rot3x3[0][0]; m[0][1] = invScale.x * rot3x3[0][1]; m[0][2] = invScale.x * rot3x3[0][2]; m[0][3] = invTranslate.x;
  179. m[1][0] = invScale.y * rot3x3[1][0]; m[1][1] = invScale.y * rot3x3[1][1]; m[1][2] = invScale.y * rot3x3[1][2]; m[1][3] = invTranslate.y;
  180. m[2][0] = invScale.z * rot3x3[2][0]; m[2][1] = invScale.z * rot3x3[2][1]; m[2][2] = invScale.z * rot3x3[2][2]; m[2][3] = invTranslate.z;
  181. // No projection term
  182. m[3][0] = 0; m[3][1] = 0; m[3][2] = 0; m[3][3] = 1;
  183. }
  184. void Matrix4::decomposition(Vector3& position, Quaternion& rotation, Vector3& scale) const
  185. {
  186. Matrix3 m3x3;
  187. extract3x3Matrix(m3x3);
  188. Matrix3 matQ;
  189. Vector3 vecU;
  190. m3x3.QDUDecomposition(matQ, scale, vecU);
  191. rotation = Quaternion(matQ);
  192. position = Vector3(m[0][3], m[1][3], m[2][3]);
  193. }
  194. void Matrix4::makeView(const Vector3& position, const Quaternion& orientation, const Matrix4* reflectMatrix)
  195. {
  196. // View matrix is:
  197. //
  198. // [ Lx Uy Dz Tx ]
  199. // [ Lx Uy Dz Ty ]
  200. // [ Lx Uy Dz Tz ]
  201. // [ 0 0 0 1 ]
  202. //
  203. // Where T = -(Transposed(Rot) * Pos)
  204. // This is most efficiently done using 3x3 Matrices
  205. Matrix3 rot;
  206. orientation.toRotationMatrix(rot);
  207. // Make the translation relative to new axes
  208. Matrix3 rotT = rot.transpose();
  209. Vector3 trans = (-rotT).transform(position);
  210. // Make final matrix
  211. *this = Matrix4(rotT);
  212. m[0][3] = trans.x;
  213. m[1][3] = trans.y;
  214. m[2][3] = trans.z;
  215. // Deal with reflections
  216. if (reflectMatrix)
  217. {
  218. *this = (*this) * (*reflectMatrix);
  219. }
  220. }
  221. }