| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679 |
- using System;
- using System.Runtime.InteropServices;
- namespace BansheeEngine
- {
- /// <summary>
- /// A 3x3 matrix. Can be used for non-homogenous transformations of three dimensional vectors and points.
- /// </summary>
- [StructLayout(LayoutKind.Sequential), SerializeObject]
- public struct Matrix3 // Note: Must match C++ class Matrix3
- {
- /// <summary>
- /// Contains constant data that is used when calculating euler angles in a certain order.
- /// </summary>
- private struct EulerAngleOrderData
- {
- public EulerAngleOrderData(int a, int b, int c, float sign)
- {
- this.a = a;
- this.b = b;
- this.c = c;
- this.sign = sign;
- }
- public int a, b, c;
- public float sign;
- };
- private static EulerAngleOrderData[] EA_LOOKUP =
- { new EulerAngleOrderData(0, 1, 2, 1.0f), new EulerAngleOrderData(0, 2, 1, -1.0f), new EulerAngleOrderData(1, 0, 2, -1.0f),
- new EulerAngleOrderData(1, 2, 0, 1.0f), new EulerAngleOrderData(2, 0, 1, 1.0f), new EulerAngleOrderData(2, 1, 0, -1.0f) };
- /// <summary>
- /// A matrix with all zero values.
- /// </summary>
- public static readonly Matrix3 Zero = new Matrix3();
- /// <summary>
- /// Identity matrix.
- /// </summary>
- public static readonly Matrix3 Identity = new Matrix3(1, 0, 0, 0, 1, 0, 0, 0, 1);
- public float m00;
- public float m01;
- public float m02;
- public float m10;
- public float m11;
- public float m12;
- public float m20;
- public float m21;
- public float m22;
- /// <summary>
- /// Creates a new matrix with the specified elements.
- /// </summary>
- public Matrix3(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22)
- {
- this.m00 = m00;
- this.m01 = m01;
- this.m02 = m02;
- this.m10 = m10;
- this.m11 = m11;
- this.m12 = m12;
- this.m20 = m20;
- this.m21 = m21;
- this.m22 = m22;
- }
- /// <summary>
- /// Value of the specified element in the matrix.
- /// </summary>
- /// <param name="row">Row index of the element to retrieve.</param>
- /// <param name="column">Column index of the element to retrieve.</param>
- /// <returns>Value of the element.</returns>
- public float this[int row, int column]
- {
- get
- {
- return this[row * 3 + column];
- }
- set
- {
- this[row * 3 + column] = value;
- }
- }
- /// <summary>
- /// Value of the specified element in the matrix using a linear index.
- /// Linear index can be calculated using the following formula: idx = row * 3 + column.
- /// </summary>
- /// <param name="index">Linear index to get the value of.</param>
- /// <returns>Value of the element.</returns>
- public float this[int index]
- {
- get
- {
- switch (index)
- {
- case 0:
- return m00;
- case 1:
- return m01;
- case 2:
- return m02;
- case 3:
- return m10;
- case 4:
- return m11;
- case 5:
- return m12;
- case 6:
- return m20;
- case 7:
- return m21;
- case 8:
- return m22;
- default:
- throw new IndexOutOfRangeException("Invalid matrix index.");
- }
- }
- set
- {
- switch (index)
- {
- case 0:
- m00 = value;
- break;
- case 1:
- m01 = value;
- break;
- case 2:
- m02 = value;
- break;
- case 3:
- m10 = value;
- break;
- case 4:
- m11 = value;
- break;
- case 5:
- m12 = value;
- break;
- case 6:
- m20 = value;
- break;
- case 7:
- m21 = value;
- break;
- case 8:
- m22 = value;
- break;
- default:
- throw new IndexOutOfRangeException("Invalid matrix index.");
- }
- }
- }
- public static Matrix3 operator *(Matrix3 lhs, Matrix3 rhs)
- {
- return new Matrix3()
- {
- m00 = lhs.m00 * rhs.m00 + lhs.m01 * rhs.m10 + lhs.m02 * rhs.m20,
- m01 = lhs.m00 * rhs.m01 + lhs.m01 * rhs.m11 + lhs.m02 * rhs.m21,
- m02 = lhs.m00 * rhs.m02 + lhs.m01 * rhs.m12 + lhs.m02 * rhs.m22,
- m10 = lhs.m10 * rhs.m00 + lhs.m11 * rhs.m10 + lhs.m12 * rhs.m20,
- m11 = lhs.m10 * rhs.m01 + lhs.m11 * rhs.m11 + lhs.m12 * rhs.m21,
- m12 = lhs.m10 * rhs.m02 + lhs.m11 * rhs.m12 + lhs.m12 * rhs.m22,
- m20 = lhs.m20 * rhs.m00 + lhs.m21 * rhs.m10 + lhs.m22 * rhs.m20,
- m21 = lhs.m20 * rhs.m01 + lhs.m21 * rhs.m11 + lhs.m22 * rhs.m21,
- m22 = lhs.m20 * rhs.m02 + lhs.m21 * rhs.m12 + lhs.m22 * rhs.m22,
- };
- }
- public static bool operator== (Matrix3 lhs, Matrix3 rhs)
- {
- if (lhs.m00 == rhs.m00 && lhs.m01 == rhs.m01 && lhs.m02 == rhs.m02 &&
- lhs.m10 == rhs.m10 && lhs.m11 == rhs.m11 && lhs.m12 == rhs.m12 &&
- lhs.m20 == rhs.m20 && lhs.m21 == rhs.m21 && lhs.m22 == rhs.m22)
- return true;
- else
- return false;
- }
- public static bool operator !=(Matrix3 lhs, Matrix3 rhs)
- {
- return !(lhs == rhs);
- }
- /// <inheritdoc/>
- public override int GetHashCode()
- {
- float hash1 = m00.GetHashCode() ^ m10.GetHashCode() << 2 ^ m20.GetHashCode() >> 2;
- float hash2 = m01.GetHashCode() ^ m11.GetHashCode() << 2 ^ m21.GetHashCode() >> 2;
- float hash3 = m02.GetHashCode() ^ m12.GetHashCode() << 2 ^ m22.GetHashCode() >> 2;
- return hash1.GetHashCode() ^ hash2.GetHashCode() << 2 ^ hash3.GetHashCode() >> 2;
- }
- /// <inheritdoc/>
- public override bool Equals(object other)
- {
- if (!(other is Matrix3))
- return false;
- Matrix3 mat = (Matrix3)other;
- if (m00 == mat.m00 && m01 == mat.m01 && m02 == mat.m02 &&
- m10 == mat.m10 && m11 == mat.m11 && m12 == mat.m12 &&
- m20 == mat.m20 && m21 == mat.m21 && m22 == mat.m22)
- return true;
- else
- return false;
- }
- /// <summary>
- /// Calculates an inverse of the matrix if it exists.
- /// </summary>
- public void Invert()
- {
- float[,] invVals = new float[3,3];
- invVals[0, 0] = m11 * m22 - m12 * m21;
- invVals[1, 0] = m12 * m20 - m10 * m22;
- invVals[2, 0] = m10 * m21 - m11 * m20;
- float det = m00 * invVals[0, 0] + m01 * invVals[1, 0] + m02 * invVals[2, 0];
- if (MathEx.Abs(det) <= 1e-06f)
- throw new DivideByZeroException("Matrix determinant is zero. Cannot invert.");
- invVals[0, 1] = m02 * m21 - m01 * m22;
- invVals[0, 2] = m01 * m12 - m02 * m11;
- invVals[1, 1] = m00 * m22 - m02 * m20;
- invVals[1, 2] = m02 * m10 - m00 * m12;
- invVals[2, 1] = m01 * m20 - m00 * m21;
- invVals[2, 2] = m00 * m11 - m01 * m10;
- float invDet = 1.0f/det;
- for (int row = 0; row < 3; row++)
- {
- for (int col = 0; col < 3; col++)
- invVals[row, col] *= invDet;
- }
- }
- /// <summary>
- /// Returns a transpose of the matrix (switched columns and rows).
- /// </summary>
- public void Transpose()
- {
- float tmp = m10;
- m10 = m01;
- m01 = tmp;
- tmp = m20;
- m20 = m02;
- m02 = tmp;
- tmp = m12;
- m12 = m21;
- m21 = tmp;
- }
- /// <summary>
- /// Calculates the matrix determinant.
- /// </summary>
- /// <returns>Determinant of the matrix.</returns>
- public float Determinant()
- {
- float cofactor00 = m11 * m22 - m12 * m21;
- float cofactor10 = m12 * m20 - m10 * m22;
- float cofactor20 = m10 * m21 - m11 * m20;
- float det = m00 * cofactor00 + m01 * cofactor10 + m02 * cofactor20;
- return det;
- }
- /// <summary>
- /// Transforms the given vector by this matrix and returns the newly transformed vector.
- /// </summary>
- /// <param name="vec">Three dimensional vector to transform.</param>
- /// <returns>Vector transformed by the matrix.</returns>
- public Vector3 Transform(Vector3 vec)
- {
- Vector3 outVec;
- outVec.x = m00 * vec.x + m01 * vec.y + m02 * vec.z;
- outVec.y = m10 * vec.x + m11 * vec.y + m12 * vec.z;
- outVec.z = m20 * vec.x + m21 * vec.y + m22 * vec.z;
- return outVec;
- }
- /// <summary>
- /// Decomposes the matrix into a set of values.
- /// </summary>
- /// <param name="matQ">Columns form orthonormal bases. If your matrix is affine and doesn't use non-uniform scaling
- /// this matrix will be the rotation part of the matrix.
- /// </param>
- /// <param name="vecD">If the matrix is affine these will be scaling factors of the matrix.</param>
- /// <param name="vecU">If the matrix is affine these will be shear factors of the matrix.</param>
- public void QDUDecomposition(out Matrix3 matQ, out Vector3 vecD, out Vector3 vecU)
- {
- matQ = new Matrix3();
- vecD = new Vector3();
- vecU = new Vector3();
- // Build orthogonal matrix Q
- float invLength = MathEx.InvSqrt(m00*m00 + m10*m10 + m20*m20);
- matQ.m00 = m00*invLength;
- matQ.m10 = m10*invLength;
- matQ.m20 = m20*invLength;
- float dot = matQ.m00*m01 + matQ.m10*m11 + matQ.m20*m21;
- matQ.m01 = m01-dot*matQ.m00;
- matQ.m11 = m11-dot*matQ.m10;
- matQ.m21 = m21-dot*matQ.m20;
- invLength = MathEx.InvSqrt(matQ.m01*matQ.m01 + matQ.m11*matQ.m11 + matQ.m21*matQ.m21);
- matQ.m01 *= invLength;
- matQ.m11 *= invLength;
- matQ.m21 *= invLength;
- dot = matQ.m00*m02 + matQ.m10*m12 + matQ.m20*m22;
- matQ.m02 = m02-dot*matQ.m00;
- matQ.m12 = m12-dot*matQ.m10;
- matQ.m22 = m22-dot*matQ.m20;
- dot = matQ.m01*m02 + matQ.m11*m12 + matQ.m21*m22;
- matQ.m02 -= dot*matQ.m01;
- matQ.m12 -= dot*matQ.m11;
- matQ.m22 -= dot*matQ.m21;
- invLength = MathEx.InvSqrt(matQ.m02*matQ.m02 + matQ.m12*matQ.m12 + matQ.m22*matQ.m22);
- matQ.m02 *= invLength;
- matQ.m12 *= invLength;
- matQ.m22 *= invLength;
- // Guarantee that orthogonal matrix has determinant 1 (no reflections)
- float fDet = matQ.m00*matQ.m11*matQ.m22 + matQ.m01*matQ.m12*matQ.m20 +
- matQ.m02*matQ.m10*matQ.m21 - matQ.m02*matQ.m11*matQ.m20 -
- matQ.m01*matQ.m10*matQ.m22 - matQ.m00*matQ.m12*matQ.m21;
- if (fDet < 0.0f)
- {
- matQ.m00 = -matQ.m00;
- matQ.m01 = -matQ.m01;
- matQ.m02 = -matQ.m02;
- matQ.m10 = -matQ.m10;
- matQ.m11 = -matQ.m11;
- matQ.m12 = -matQ.m12;
- matQ.m20 = -matQ.m20;
- matQ.m21 = -matQ.m21;
- matQ.m21 = -matQ.m22;
- }
- // Build "right" matrix R
- Matrix3 matRight = new Matrix3();
- matRight.m00 = matQ.m00 * m00 + matQ.m10 * m10 + matQ.m20 * m20;
- matRight.m01 = matQ.m00 * m01 + matQ.m10 * m11 + matQ.m20 * m21;
- matRight.m11 = matQ.m01 * m01 + matQ.m11 * m11 + matQ.m21 * m21;
- matRight.m02 = matQ.m00 * m02 + matQ.m10 * m12 + matQ.m20 * m22;
- matRight.m12 = matQ.m01 * m02 + matQ.m11 * m12 + matQ.m21 * m22;
- matRight.m22 = matQ.m02 * m02 + matQ.m12 * m12 + matQ.m22 * m22;
- // The scaling component
- vecD[0] = matRight.m00;
- vecD[1] = matRight.m11;
- vecD[2] = matRight.m22;
- // The shear component
- float invD0 = 1.0f/vecD[0];
- vecU[0] = matRight.m01 * invD0;
- vecU[1] = matRight.m02 * invD0;
- vecU[2] = matRight.m12 / vecD[1];
- }
- /// <summary>
- /// Converts an orthonormal matrix to euler angle (pitch/yaw/roll) representation.
- /// </summary>
- /// <returns>Euler angles in degrees representing the rotation in this matrix.</returns>
- public Vector3 ToEulerAngles()
- {
- float xAngle = -MathEx.Asin(this[1, 2]);
- if (xAngle < MathEx.HalfPi)
- {
- if (xAngle > -MathEx.HalfPi)
- {
- float yAngle = MathEx.Atan2(this[0, 2], this[2, 2]);
- float zAngle = MathEx.Atan2(this[1, 0], this[1, 1]);
- return new Vector3(xAngle * MathEx.Rad2Deg, yAngle * MathEx.Rad2Deg, zAngle * MathEx.Rad2Deg);
- }
- else
- {
- // Note: Not an unique solution.
- xAngle = -MathEx.HalfPi;
- float yAngle = MathEx.Atan2(-this[0, 1], this[0, 0]);
- float zAngle = 0.0f;
-
- return new Vector3(xAngle * MathEx.Rad2Deg, yAngle * MathEx.Rad2Deg, zAngle * MathEx.Rad2Deg);
- }
- }
- else
- {
- // Note: Not an unique solution.
- xAngle = MathEx.HalfPi;
- float yAngle = MathEx.Atan2(this[0, 1], this[0, 0]);
- float zAngle = 0.0f;
- return new Vector3(xAngle * MathEx.Rad2Deg, yAngle * MathEx.Rad2Deg, zAngle * MathEx.Rad2Deg);
- }
- }
- /// <summary>
- /// Converts an orthonormal matrix to quaternion representation.
- /// </summary>
- /// <returns>Quaternion representing the rotation in this matrix.</returns>
- public Quaternion ToQuaternion()
- {
- return Quaternion.FromRotationMatrix(this);
- }
- /// <summary>
- /// Converts an orthonormal matrix to axis angle representation.
- /// </summary>
- /// <param name="axis">Axis around which the rotation is performed.</param>
- /// <param name="angle">Amount of rotation.</param>
- public void ToAxisAngle(out Vector3 axis, out Degree angle)
- {
- float trace = m00 + m11 + m22;
- float cos = 0.5f*(trace-1.0f);
- Radian radians = MathEx.Acos(cos); // In [0, PI]
- angle = radians.Degrees;
- if (radians > 0.0f)
- {
- if (radians < MathEx.Pi)
- {
- axis.x = m21 - m12;
- axis.y = m02 - m20;
- axis.z = m10 - m01;
- axis.Normalize();
- }
- else
- {
- // Angle is PI
- float halfInverse;
- if (m00 >= m11)
- {
- // r00 >= r11
- if (m00 >= m22)
- {
- // r00 is maximum diagonal term
- axis.x = 0.5f*MathEx.Sqrt(m00 - m11 - m22 + 1.0f);
- halfInverse = 0.5f/axis.x;
- axis.y = halfInverse*m01;
- axis.z = halfInverse*m02;
- }
- else
- {
- // r22 is maximum diagonal term
- axis.z = 0.5f*MathEx.Sqrt(m22 - m00 - m11 + 1.0f);
- halfInverse = 0.5f/axis.z;
- axis.x = halfInverse*m02;
- axis.y = halfInverse*m12;
- }
- }
- else
- {
- // r11 > r00
- if (m11 >= m22)
- {
- // r11 is maximum diagonal term
- axis.y = 0.5f*MathEx.Sqrt(m11 - m00 - m22 + 1.0f);
- halfInverse = 0.5f/axis.y;
- axis.x = halfInverse*m01;
- axis.z = halfInverse*m12;
- }
- else
- {
- // r22 is maximum diagonal term
- axis.z = 0.5f*MathEx.Sqrt(m22 - m00 - m11 + 1.0f);
- halfInverse = 0.5f/axis.z;
- axis.x = halfInverse*m02;
- axis.y = halfInverse*m12;
- }
- }
- }
- }
- else
- {
- // The angle is 0 and the matrix is the identity. Any axis will
- // work, so just use the x-axis.
- axis.x = 1.0f;
- axis.y = 0.0f;
- axis.z = 0.0f;
- }
- }
- /// <summary>
- /// Calculates the inverse of the matrix if it exists.
- /// </summary>
- /// <param name="mat">Matrix to calculate the inverse of.</param>
- /// <returns>Inverse of the matrix.</returns>
- public static Matrix3 Inverse(Matrix3 mat)
- {
- Matrix3 copy = mat;
- copy.Invert();
- return copy;
- }
- /// <summary>
- /// Calculates the transpose of the matrix.
- /// </summary>
- /// <param name="mat">Matrix to calculate the transpose of.</param>
- /// <returns>Transpose of the matrix.</returns>
- public static Matrix3 Transpose(Matrix3 mat)
- {
- Matrix3 copy = mat;
- copy.Transpose();
- return copy;
- }
- /// <summary>
- /// Creates a rotation matrix from the provided euler angle (pitch/yaw/roll) rotation.
- /// </summary>
- /// <param name="euler">Euler angles in degrees.</param>
- /// <param name="order">The order in which rotations will be applied. Different rotations can be created depending
- /// on the order.</param>
- /// <returns>Rotation matrix that can rotate an object to the specified angles.</returns>
- public static Matrix3 FromEuler(Vector3 euler, EulerAngleOrder order)
- {
- return FromEuler(new Degree(euler.x), new Degree(euler.y), new Degree(euler.y), order);
- }
- /// <summary>
- /// Creates a rotation matrix from the provided euler angle (pitch/yaw/roll) rotation.
- /// </summary>
- /// <param name="xAngle">Pitch angle of rotation.</param>
- /// <param name="yAngle">Yar angle of rotation.</param>
- /// <param name="zAngle">Roll angle of rotation.</param>
- /// <param name="order">The order in which rotations will be applied. Different rotations can be created depending
- /// on the order.</param>
- /// <returns>Rotation matrix that can rotate an object to the specified angles.</returns>
- public static Matrix3 FromEuler(Radian xAngle, Radian yAngle, Radian zAngle, EulerAngleOrder order)
- {
- EulerAngleOrderData l = EA_LOOKUP[(int)order];
- Matrix3[] mats = new Matrix3[3];
- float cx = MathEx.Cos(xAngle);
- float sx = MathEx.Sin(xAngle);
- mats[0] = new Matrix3(
- 1.0f, 0.0f, 0.0f,
- 0.0f, cx, -sx,
- 0.0f, sx, cx);
- float cy = MathEx.Cos(yAngle);
- float sy = MathEx.Sin(yAngle);
- mats[1] = new Matrix3(
- cy, 0.0f, sy,
- 0.0f, 1.0f, 0.0f,
- -sy, 0.0f, cy);
- float cz = MathEx.Cos(zAngle);
- float sz = MathEx.Sin(zAngle);
- mats[2] = new Matrix3(
- cz, -sz, 0.0f,
- sz, cz, 0.0f,
- 0.0f, 0.0f, 1.0f);
-
- return mats[l.a]*(mats[l.b]*mats[l.c]);
- }
- /// <summary>
- /// Creates a rotation matrix from the provided euler angle (pitch/yaw/roll) rotation. Angles are applied in YXZ
- /// order.
- /// </summary>
- /// <param name="euler">Euler angles in degrees.</param>
- /// <returns>Rotation matrix that can rotate an object to the specified angles.</returns>
- public static Matrix3 FromEuler(Vector3 euler)
- {
- return FromEuler(new Degree(euler.x), new Degree(euler.y), new Degree(euler.y));
- }
- /// <summary>
- /// Creates a rotation matrix from the provided euler angle (pitch/yaw/roll) rotation. Angles are applied in YXZ
- /// order.
- /// </summary>
- /// <param name="xAngle">Pitch angle of rotation.</param>
- /// <param name="yAngle">Yar angle of rotation.</param>
- /// <param name="zAngle">Roll angle of rotation.</param>
- /// <returns>Rotation matrix that can rotate an object to the specified angles.</returns>
- public static Matrix3 FromEuler(Radian xAngle, Radian yAngle, Radian zAngle)
- {
- Matrix3 m = new Matrix3();
- float cx = MathEx.Cos(xAngle);
- float sx = MathEx.Sin(xAngle);
- float cy = MathEx.Cos(yAngle);
- float sy = MathEx.Sin(yAngle);
- float cz = MathEx.Cos(zAngle);
- float sz = MathEx.Sin(zAngle);
- m[0, 0] = cy * cz + sx * sy * sz;
- m[0, 1] = cz * sx * sy - cy * sz;
- m[0, 2] = cx * sy;
- m[1, 0] = cx * sz;
- m[1, 1] = cx * cz;
- m[1, 2] = -sx;
- m[2, 0] = -cz * sy + cy * sx * sz;
- m[2, 1] = cy * cz * sx + sy * sz;
- m[2, 2] = cx * cy;
- return m;
- }
- /// <summary>
- /// Creates a rotation matrix from axis/angle rotation.
- /// </summary>
- /// <param name="axis">Axis around which the rotation is performed.</param>
- /// <param name="angle">Amount of rotation.</param>
- /// <returns>Rotation matrix that can rotate an object around the specified axis for the specified amount.</returns>
- public static Matrix3 FromAxisAngle(Vector3 axis, Degree angle)
- {
- Matrix3 mat;
- float cos = MathEx.Cos(angle);
- float sin = MathEx.Sin(angle);
- float oneMinusCos = 1.0f - cos;
- float x2 = axis.x * axis.x;
- float y2 = axis.y * axis.y;
- float z2 = axis.z * axis.z;
- float xym = axis.x * axis.y * oneMinusCos;
- float xzm = axis.x * axis.z * oneMinusCos;
- float yzm = axis.y * axis.z * oneMinusCos;
- float xSin = axis.x * sin;
- float ySin = axis.y * sin;
- float zSin = axis.z * sin;
- mat.m00 = x2 * oneMinusCos + cos;
- mat.m01 = xym - zSin;
- mat.m02 = xzm + ySin;
- mat.m10 = xym + zSin;
- mat.m11 = y2 * oneMinusCos + cos;
- mat.m12 = yzm - xSin;
- mat.m20 = xzm - ySin;
- mat.m21 = yzm + xSin;
- mat.m22 = z2 * oneMinusCos + cos;
- return mat;
- }
- /// <summary>
- /// Creates a rotation matrix from a quaternion rotation.
- /// </summary>
- /// <param name="quat">Quaternion to create the matrix from.</param>
- /// <returns>Rotation matrix containing the equivalent rotation of the provided quaternion.</returns>
- public static Matrix3 FromQuaternion(Quaternion quat)
- {
- return quat.ToRotationMatrix();
- }
- /// <inheritdoc/>
- public override string ToString()
- {
- return String.Format("({0}, {1}, {2},\n{3}, {4}, {5}\n{6}, {7}, {8})",
- m00, m01, m02, m10, m11, m12, m20, m21, m22);
- }
- }
- }
|