| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661 |
- /*
- -----------------------------------------------------------------------------
- This source file is part of OGRE
- (Object-oriented Graphics Rendering Engine)
- For the latest info, see http://www.ogre3d.org/
- Copyright (c) 2000-2011 Torus Knot Software Ltd
- Permission is hereby granted, free of charge, to any person obtaining a copy
- of this software and associated documentation files (the "Software"), to deal
- in the Software without restriction, including without limitation the rights
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- copies of the Software, and to permit persons to whom the Software is
- furnished to do so, subject to the following conditions:
- The above copyright notice and this permission notice shall be included in
- all copies or substantial portions of the Software.
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- THE SOFTWARE.
- -----------------------------------------------------------------------------
- */
- #ifndef __Matrix4__
- #define __Matrix4__
- // Precompiler options
- #include "CmPrerequisitesUtil.h"
- #include "CmVector3.h"
- #include "CmMatrix3.h"
- #include "CmVector4.h"
- #include "CmPlane.h"
- namespace CamelotFramework
- {
- /** \addtogroup Core
- * @{
- */
- /** \addtogroup Math
- * @{
- */
- /** Class encapsulating a standard 4x4 homogeneous matrix.
- @remarks
- We use column vectors when applying matrix multiplications,
- This means a vector is represented as a single column, 4-row
- matrix. This has the effect that the transformations implemented
- by the matrices happens right-to-left e.g. if vector V is to be
- transformed by M1 then M2 then M3, the calculation would be
- M3 * M2 * M1 * V. The order that matrices are concatenated is
- vital since matrix multiplication is not commutative, i.e. you
- can get a different result if you concatenate in the wrong order.
- @par
- The use of column vectors and right-to-left ordering is the
- standard in most mathematical texts, and is the same as used in
- OpenGL. It is, however, the opposite of Direct3D, which has
- inexplicably chosen to differ from the accepted standard and uses
- row vectors and left-to-right matrix multiplication.
- @par
- We deal with the differences between D3D and OpenGL etc.
- internally when operating through different render systems.
- Users only need to conform to standard maths conventions, i.e.
- right-to-left matrix multiplication, (Engine transposes matrices it
- passes to D3D to compensate).
- @par
- The generic form M * V which shows the layout of the matrix
- entries is shown below:
- <pre>
- [ m[0][0] m[0][1] m[0][2] m[0][3] ] {x}
- | m[1][0] m[1][1] m[1][2] m[1][3] | * {y}
- | m[2][0] m[2][1] m[2][2] m[2][3] | {z}
- [ m[3][0] m[3][1] m[3][2] m[3][3] ] {1}
- </pre>
- */
- class CM_UTILITY_EXPORT Matrix4
- {
- protected:
- /// The matrix entries, indexed by [row][col].
- union {
- float m[4][4];
- float _m[16];
- };
- public:
- /** Default constructor.
- @note
- It does <b>NOT</b> initialize the matrix for efficiency.
- */
- inline Matrix4()
- {
- }
- inline Matrix4(
- float m00, float m01, float m02, float m03,
- float m10, float m11, float m12, float m13,
- float m20, float m21, float m22, float m23,
- float m30, float m31, float m32, float m33 )
- {
- m[0][0] = m00;
- m[0][1] = m01;
- m[0][2] = m02;
- m[0][3] = m03;
- m[1][0] = m10;
- m[1][1] = m11;
- m[1][2] = m12;
- m[1][3] = m13;
- m[2][0] = m20;
- m[2][1] = m21;
- m[2][2] = m22;
- m[2][3] = m23;
- m[3][0] = m30;
- m[3][1] = m31;
- m[3][2] = m32;
- m[3][3] = m33;
- }
- /** Creates a standard 4x4 transformation matrix with a zero translation part from a rotation/scaling 3x3 matrix.
- */
- inline Matrix4(const Matrix3& m3x3)
- {
- operator=(IDENTITY);
- operator=(m3x3);
- }
- /** Creates a standard 4x4 transformation matrix with a zero translation part from a rotation/scaling Quaternion.
- */
-
- inline Matrix4(const Quaternion& rot)
- {
- Matrix3 m3x3;
- rot.ToRotationMatrix(m3x3);
- operator=(IDENTITY);
- operator=(m3x3);
- }
-
- /** Exchange the contents of this matrix with another.
- */
- inline void swap(Matrix4& other)
- {
- std::swap(m[0][0], other.m[0][0]);
- std::swap(m[0][1], other.m[0][1]);
- std::swap(m[0][2], other.m[0][2]);
- std::swap(m[0][3], other.m[0][3]);
- std::swap(m[1][0], other.m[1][0]);
- std::swap(m[1][1], other.m[1][1]);
- std::swap(m[1][2], other.m[1][2]);
- std::swap(m[1][3], other.m[1][3]);
- std::swap(m[2][0], other.m[2][0]);
- std::swap(m[2][1], other.m[2][1]);
- std::swap(m[2][2], other.m[2][2]);
- std::swap(m[2][3], other.m[2][3]);
- std::swap(m[3][0], other.m[3][0]);
- std::swap(m[3][1], other.m[3][1]);
- std::swap(m[3][2], other.m[3][2]);
- std::swap(m[3][3], other.m[3][3]);
- }
- inline float* operator [] ( size_t iRow )
- {
- assert( iRow < 4 );
- return m[iRow];
- }
- inline const float *operator [] ( size_t iRow ) const
- {
- assert( iRow < 4 );
- return m[iRow];
- }
- inline Matrix4 concatenate(const Matrix4 &m2) const
- {
- Matrix4 r;
- r.m[0][0] = m[0][0] * m2.m[0][0] + m[0][1] * m2.m[1][0] + m[0][2] * m2.m[2][0] + m[0][3] * m2.m[3][0];
- r.m[0][1] = m[0][0] * m2.m[0][1] + m[0][1] * m2.m[1][1] + m[0][2] * m2.m[2][1] + m[0][3] * m2.m[3][1];
- r.m[0][2] = m[0][0] * m2.m[0][2] + m[0][1] * m2.m[1][2] + m[0][2] * m2.m[2][2] + m[0][3] * m2.m[3][2];
- r.m[0][3] = m[0][0] * m2.m[0][3] + m[0][1] * m2.m[1][3] + m[0][2] * m2.m[2][3] + m[0][3] * m2.m[3][3];
- r.m[1][0] = m[1][0] * m2.m[0][0] + m[1][1] * m2.m[1][0] + m[1][2] * m2.m[2][0] + m[1][3] * m2.m[3][0];
- r.m[1][1] = m[1][0] * m2.m[0][1] + m[1][1] * m2.m[1][1] + m[1][2] * m2.m[2][1] + m[1][3] * m2.m[3][1];
- r.m[1][2] = m[1][0] * m2.m[0][2] + m[1][1] * m2.m[1][2] + m[1][2] * m2.m[2][2] + m[1][3] * m2.m[3][2];
- r.m[1][3] = m[1][0] * m2.m[0][3] + m[1][1] * m2.m[1][3] + m[1][2] * m2.m[2][3] + m[1][3] * m2.m[3][3];
- r.m[2][0] = m[2][0] * m2.m[0][0] + m[2][1] * m2.m[1][0] + m[2][2] * m2.m[2][0] + m[2][3] * m2.m[3][0];
- r.m[2][1] = m[2][0] * m2.m[0][1] + m[2][1] * m2.m[1][1] + m[2][2] * m2.m[2][1] + m[2][3] * m2.m[3][1];
- r.m[2][2] = m[2][0] * m2.m[0][2] + m[2][1] * m2.m[1][2] + m[2][2] * m2.m[2][2] + m[2][3] * m2.m[3][2];
- r.m[2][3] = m[2][0] * m2.m[0][3] + m[2][1] * m2.m[1][3] + m[2][2] * m2.m[2][3] + m[2][3] * m2.m[3][3];
- r.m[3][0] = m[3][0] * m2.m[0][0] + m[3][1] * m2.m[1][0] + m[3][2] * m2.m[2][0] + m[3][3] * m2.m[3][0];
- r.m[3][1] = m[3][0] * m2.m[0][1] + m[3][1] * m2.m[1][1] + m[3][2] * m2.m[2][1] + m[3][3] * m2.m[3][1];
- r.m[3][2] = m[3][0] * m2.m[0][2] + m[3][1] * m2.m[1][2] + m[3][2] * m2.m[2][2] + m[3][3] * m2.m[3][2];
- r.m[3][3] = m[3][0] * m2.m[0][3] + m[3][1] * m2.m[1][3] + m[3][2] * m2.m[2][3] + m[3][3] * m2.m[3][3];
- return r;
- }
- /** Matrix concatenation using '*'.
- */
- inline Matrix4 operator * ( const Matrix4 &m2 ) const
- {
- return concatenate( m2 );
- }
- /** Vector transformation using '*'.
- @remarks
- Transforms the given 3-D vector by the matrix, projecting the
- result back into <i>w</i> = 1.
- @note
- This means that the initial <i>w</i> is considered to be 1.0,
- and then all the tree elements of the resulting 3-D vector are
- divided by the resulting <i>w</i>.
- */
- inline Vector3 operator * ( const Vector3 &v ) const
- {
- Vector3 r;
- float fInvW = 1.0f / ( m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3] );
- r.x = ( m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] ) * fInvW;
- r.y = ( m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] ) * fInvW;
- r.z = ( m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] ) * fInvW;
- return r;
- }
- inline Vector4 operator * (const Vector4& v) const
- {
- return Vector4(
- m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w,
- m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w,
- m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w,
- m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3] * v.w
- );
- }
- inline Plane operator * (const Plane& p) const
- {
- Plane ret;
- Matrix4 invTrans = inverse().transpose();
- Vector4 v4( p.normal.x, p.normal.y, p.normal.z, p.d );
- v4 = invTrans * v4;
- ret.normal.x = v4.x;
- ret.normal.y = v4.y;
- ret.normal.z = v4.z;
- ret.d = v4.w / ret.normal.normalize();
- return ret;
- }
- /** Matrix addition.
- */
- inline Matrix4 operator + ( const Matrix4 &m2 ) const
- {
- Matrix4 r;
- r.m[0][0] = m[0][0] + m2.m[0][0];
- r.m[0][1] = m[0][1] + m2.m[0][1];
- r.m[0][2] = m[0][2] + m2.m[0][2];
- r.m[0][3] = m[0][3] + m2.m[0][3];
- r.m[1][0] = m[1][0] + m2.m[1][0];
- r.m[1][1] = m[1][1] + m2.m[1][1];
- r.m[1][2] = m[1][2] + m2.m[1][2];
- r.m[1][3] = m[1][3] + m2.m[1][3];
- r.m[2][0] = m[2][0] + m2.m[2][0];
- r.m[2][1] = m[2][1] + m2.m[2][1];
- r.m[2][2] = m[2][2] + m2.m[2][2];
- r.m[2][3] = m[2][3] + m2.m[2][3];
- r.m[3][0] = m[3][0] + m2.m[3][0];
- r.m[3][1] = m[3][1] + m2.m[3][1];
- r.m[3][2] = m[3][2] + m2.m[3][2];
- r.m[3][3] = m[3][3] + m2.m[3][3];
- return r;
- }
- /** Matrix subtraction.
- */
- inline Matrix4 operator - ( const Matrix4 &m2 ) const
- {
- Matrix4 r;
- r.m[0][0] = m[0][0] - m2.m[0][0];
- r.m[0][1] = m[0][1] - m2.m[0][1];
- r.m[0][2] = m[0][2] - m2.m[0][2];
- r.m[0][3] = m[0][3] - m2.m[0][3];
- r.m[1][0] = m[1][0] - m2.m[1][0];
- r.m[1][1] = m[1][1] - m2.m[1][1];
- r.m[1][2] = m[1][2] - m2.m[1][2];
- r.m[1][3] = m[1][3] - m2.m[1][3];
- r.m[2][0] = m[2][0] - m2.m[2][0];
- r.m[2][1] = m[2][1] - m2.m[2][1];
- r.m[2][2] = m[2][2] - m2.m[2][2];
- r.m[2][3] = m[2][3] - m2.m[2][3];
- r.m[3][0] = m[3][0] - m2.m[3][0];
- r.m[3][1] = m[3][1] - m2.m[3][1];
- r.m[3][2] = m[3][2] - m2.m[3][2];
- r.m[3][3] = m[3][3] - m2.m[3][3];
- return r;
- }
- /** Tests 2 matrices for equality.
- */
- inline bool operator == ( const Matrix4& m2 ) const
- {
- if(
- m[0][0] != m2.m[0][0] || m[0][1] != m2.m[0][1] || m[0][2] != m2.m[0][2] || m[0][3] != m2.m[0][3] ||
- m[1][0] != m2.m[1][0] || m[1][1] != m2.m[1][1] || m[1][2] != m2.m[1][2] || m[1][3] != m2.m[1][3] ||
- m[2][0] != m2.m[2][0] || m[2][1] != m2.m[2][1] || m[2][2] != m2.m[2][2] || m[2][3] != m2.m[2][3] ||
- m[3][0] != m2.m[3][0] || m[3][1] != m2.m[3][1] || m[3][2] != m2.m[3][2] || m[3][3] != m2.m[3][3] )
- return false;
- return true;
- }
- /** Tests 2 matrices for inequality.
- */
- inline bool operator != ( const Matrix4& m2 ) const
- {
- if(
- m[0][0] != m2.m[0][0] || m[0][1] != m2.m[0][1] || m[0][2] != m2.m[0][2] || m[0][3] != m2.m[0][3] ||
- m[1][0] != m2.m[1][0] || m[1][1] != m2.m[1][1] || m[1][2] != m2.m[1][2] || m[1][3] != m2.m[1][3] ||
- m[2][0] != m2.m[2][0] || m[2][1] != m2.m[2][1] || m[2][2] != m2.m[2][2] || m[2][3] != m2.m[2][3] ||
- m[3][0] != m2.m[3][0] || m[3][1] != m2.m[3][1] || m[3][2] != m2.m[3][2] || m[3][3] != m2.m[3][3] )
- return true;
- return false;
- }
- /** Assignment from 3x3 matrix.
- */
- inline void operator = ( const Matrix3& mat3 )
- {
- m[0][0] = mat3.m[0][0]; m[0][1] = mat3.m[0][1]; m[0][2] = mat3.m[0][2];
- m[1][0] = mat3.m[1][0]; m[1][1] = mat3.m[1][1]; m[1][2] = mat3.m[1][2];
- m[2][0] = mat3.m[2][0]; m[2][1] = mat3.m[2][1]; m[2][2] = mat3.m[2][2];
- }
- inline Matrix4 transpose(void) const
- {
- return Matrix4(m[0][0], m[1][0], m[2][0], m[3][0],
- m[0][1], m[1][1], m[2][1], m[3][1],
- m[0][2], m[1][2], m[2][2], m[3][2],
- m[0][3], m[1][3], m[2][3], m[3][3]);
- }
- /*
- -----------------------------------------------------------------------
- Translation Transformation
- -----------------------------------------------------------------------
- */
- /** Sets the translation transformation part of the matrix.
- */
- inline void setTrans( const Vector3& v )
- {
- m[0][3] = v.x;
- m[1][3] = v.y;
- m[2][3] = v.z;
- }
- /** Extracts the translation transformation part of the matrix.
- */
- inline Vector3 getTrans() const
- {
- return Vector3(m[0][3], m[1][3], m[2][3]);
- }
-
- /** Builds a translation matrix
- */
- inline void makeTrans( const Vector3& v )
- {
- m[0][0] = 1.0; m[0][1] = 0.0; m[0][2] = 0.0; m[0][3] = v.x;
- m[1][0] = 0.0; m[1][1] = 1.0; m[1][2] = 0.0; m[1][3] = v.y;
- m[2][0] = 0.0; m[2][1] = 0.0; m[2][2] = 1.0; m[2][3] = v.z;
- m[3][0] = 0.0; m[3][1] = 0.0; m[3][2] = 0.0; m[3][3] = 1.0;
- }
- inline void makeTrans( float tx, float ty, float tz )
- {
- m[0][0] = 1.0; m[0][1] = 0.0; m[0][2] = 0.0; m[0][3] = tx;
- m[1][0] = 0.0; m[1][1] = 1.0; m[1][2] = 0.0; m[1][3] = ty;
- m[2][0] = 0.0; m[2][1] = 0.0; m[2][2] = 1.0; m[2][3] = tz;
- m[3][0] = 0.0; m[3][1] = 0.0; m[3][2] = 0.0; m[3][3] = 1.0;
- }
- /** Gets a translation matrix.
- */
- inline static Matrix4 getTrans( const Vector3& v )
- {
- Matrix4 r;
- r.m[0][0] = 1.0; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = v.x;
- r.m[1][0] = 0.0; r.m[1][1] = 1.0; r.m[1][2] = 0.0; r.m[1][3] = v.y;
- r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = 1.0; r.m[2][3] = v.z;
- r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0;
- return r;
- }
- /** Gets a translation matrix - variation for not using a vector.
- */
- inline static Matrix4 getTrans( float t_x, float t_y, float t_z )
- {
- Matrix4 r;
- r.m[0][0] = 1.0; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = t_x;
- r.m[1][0] = 0.0; r.m[1][1] = 1.0; r.m[1][2] = 0.0; r.m[1][3] = t_y;
- r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = 1.0; r.m[2][3] = t_z;
- r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0;
- return r;
- }
- /*
- -----------------------------------------------------------------------
- Scale Transformation
- -----------------------------------------------------------------------
- */
- /** Sets the scale part of the matrix.
- */
- inline void setScale( const Vector3& v )
- {
- m[0][0] = v.x;
- m[1][1] = v.y;
- m[2][2] = v.z;
- }
- /** Gets a scale matrix.
- */
- inline static Matrix4 getScale( const Vector3& v )
- {
- Matrix4 r;
- r.m[0][0] = v.x; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = 0.0;
- r.m[1][0] = 0.0; r.m[1][1] = v.y; r.m[1][2] = 0.0; r.m[1][3] = 0.0;
- r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = v.z; r.m[2][3] = 0.0;
- r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0;
- return r;
- }
- /** Gets a scale matrix - variation for not using a vector.
- */
- inline static Matrix4 getScale( float s_x, float s_y, float s_z )
- {
- Matrix4 r;
- r.m[0][0] = s_x; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = 0.0;
- r.m[1][0] = 0.0; r.m[1][1] = s_y; r.m[1][2] = 0.0; r.m[1][3] = 0.0;
- r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = s_z; r.m[2][3] = 0.0;
- r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0;
- return r;
- }
- /** Extracts the rotation / scaling part of the Matrix as a 3x3 matrix.
- @param m3x3 Destination Matrix3
- */
- inline void extract3x3Matrix(Matrix3& m3x3) const
- {
- m3x3.m[0][0] = m[0][0];
- m3x3.m[0][1] = m[0][1];
- m3x3.m[0][2] = m[0][2];
- m3x3.m[1][0] = m[1][0];
- m3x3.m[1][1] = m[1][1];
- m3x3.m[1][2] = m[1][2];
- m3x3.m[2][0] = m[2][0];
- m3x3.m[2][1] = m[2][1];
- m3x3.m[2][2] = m[2][2];
- }
- /** Determines if this matrix involves a scaling. */
- inline bool hasScale() const
- {
- // check magnitude of column vectors (==local axes)
- float t = m[0][0] * m[0][0] + m[1][0] * m[1][0] + m[2][0] * m[2][0];
- if (!Math::RealEqual(t, 1.0, (float)1e-04))
- return true;
- t = m[0][1] * m[0][1] + m[1][1] * m[1][1] + m[2][1] * m[2][1];
- if (!Math::RealEqual(t, 1.0, (float)1e-04))
- return true;
- t = m[0][2] * m[0][2] + m[1][2] * m[1][2] + m[2][2] * m[2][2];
- if (!Math::RealEqual(t, 1.0, (float)1e-04))
- return true;
- return false;
- }
- /** Determines if this matrix involves a negative scaling. */
- inline bool hasNegativeScale() const
- {
- return determinant() < 0;
- }
- /** Extracts the rotation / scaling part as a quaternion from the Matrix.
- */
- inline Quaternion extractQuaternion() const
- {
- Matrix3 m3x3;
- extract3x3Matrix(m3x3);
- return Quaternion(m3x3);
- }
- static const Matrix4 ZERO;
- static const Matrix4 IDENTITY;
- /** Useful little matrix which takes 2D clipspace {-1, 1} to {0,1}
- and inverts the Y. */
- static const Matrix4 CLIPSPACE2DTOIMAGESPACE;
- inline Matrix4 operator*(float scalar) const
- {
- return Matrix4(
- scalar*m[0][0], scalar*m[0][1], scalar*m[0][2], scalar*m[0][3],
- scalar*m[1][0], scalar*m[1][1], scalar*m[1][2], scalar*m[1][3],
- scalar*m[2][0], scalar*m[2][1], scalar*m[2][2], scalar*m[2][3],
- scalar*m[3][0], scalar*m[3][1], scalar*m[3][2], scalar*m[3][3]);
- }
- /** Function for writing to a stream.
- */
- inline CM_UTILITY_EXPORT friend std::ostream& operator <<
- ( std::ostream& o, const Matrix4& mat )
- {
- o << "Matrix4(";
- for (size_t i = 0; i < 4; ++i)
- {
- o << " row" << (unsigned)i << "{";
- for(size_t j = 0; j < 4; ++j)
- {
- o << mat[i][j] << " ";
- }
- o << "}";
- }
- o << ")";
- return o;
- }
-
- Matrix4 adjoint() const;
- float determinant() const;
- Matrix4 inverse() const;
- /** Building a Matrix4 from orientation / scale / position.
- @remarks
- Transform is performed in the order scale, rotate, translation, i.e. translation is independent
- of orientation axes, scale does not affect size of translation, rotation and scaling are always
- centered on the origin.
- */
- void makeTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation);
- /** Building an inverse Matrix4 from orientation / scale / position.
- @remarks
- As makeTransform except it build the inverse given the same data as makeTransform, so
- performing -translation, -rotate, 1/scale in that order.
- */
- void makeInverseTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation);
- /** Decompose a Matrix4 to orientation / scale / position.
- */
- void decomposition(Vector3& position, Vector3& scale, Quaternion& orientation) const;
- /** Check whether or not the matrix is affine matrix.
- @remarks
- An affine matrix is a 4x4 matrix with row 3 equal to (0, 0, 0, 1),
- e.g. no projective coefficients.
- */
- inline bool isAffine(void) const
- {
- return m[3][0] == 0 && m[3][1] == 0 && m[3][2] == 0 && m[3][3] == 1;
- }
- /** Returns the inverse of the affine matrix.
- @note
- The matrix must be an affine matrix. @see Matrix4::isAffine.
- */
- Matrix4 inverseAffine(void) const;
- /** Concatenate two affine matrices.
- @note
- The matrices must be affine matrix. @see Matrix4::isAffine.
- */
- inline Matrix4 concatenateAffine(const Matrix4 &m2) const
- {
- assert(isAffine() && m2.isAffine());
- return Matrix4(
- m[0][0] * m2.m[0][0] + m[0][1] * m2.m[1][0] + m[0][2] * m2.m[2][0],
- m[0][0] * m2.m[0][1] + m[0][1] * m2.m[1][1] + m[0][2] * m2.m[2][1],
- m[0][0] * m2.m[0][2] + m[0][1] * m2.m[1][2] + m[0][2] * m2.m[2][2],
- m[0][0] * m2.m[0][3] + m[0][1] * m2.m[1][3] + m[0][2] * m2.m[2][3] + m[0][3],
- m[1][0] * m2.m[0][0] + m[1][1] * m2.m[1][0] + m[1][2] * m2.m[2][0],
- m[1][0] * m2.m[0][1] + m[1][1] * m2.m[1][1] + m[1][2] * m2.m[2][1],
- m[1][0] * m2.m[0][2] + m[1][1] * m2.m[1][2] + m[1][2] * m2.m[2][2],
- m[1][0] * m2.m[0][3] + m[1][1] * m2.m[1][3] + m[1][2] * m2.m[2][3] + m[1][3],
- m[2][0] * m2.m[0][0] + m[2][1] * m2.m[1][0] + m[2][2] * m2.m[2][0],
- m[2][0] * m2.m[0][1] + m[2][1] * m2.m[1][1] + m[2][2] * m2.m[2][1],
- m[2][0] * m2.m[0][2] + m[2][1] * m2.m[1][2] + m[2][2] * m2.m[2][2],
- m[2][0] * m2.m[0][3] + m[2][1] * m2.m[1][3] + m[2][2] * m2.m[2][3] + m[2][3],
- 0, 0, 0, 1);
- }
- /** 3-D Vector transformation specially for an affine matrix.
- @remarks
- Transforms the given 3-D vector by the matrix, projecting the
- result back into <i>w</i> = 1.
- @note
- The matrix must be an affine matrix. @see Matrix4::isAffine.
- */
- inline Vector3 transformAffine(const Vector3& v) const
- {
- assert(isAffine());
- return Vector3(
- m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3],
- m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3],
- m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3]);
- }
- /** 4-D Vector transformation specially for an affine matrix.
- @note
- The matrix must be an affine matrix. @see Matrix4::isAffine.
- */
- inline Vector4 transformAffine(const Vector4& v) const
- {
- assert(isAffine());
- return Vector4(
- m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w,
- m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w,
- m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w,
- v.w);
- }
- };
- /* Removed from Vector4 and made a non-member here because otherwise
- CmMatrix4.h and CmVector4.h have to try to include and inline each
- other, which frankly doesn't work ;)
- */
- inline Vector4 operator * (const Vector4& v, const Matrix4& mat)
- {
- return Vector4(
- v.x*mat[0][0] + v.y*mat[1][0] + v.z*mat[2][0] + v.w*mat[3][0],
- v.x*mat[0][1] + v.y*mat[1][1] + v.z*mat[2][1] + v.w*mat[3][1],
- v.x*mat[0][2] + v.y*mat[1][2] + v.z*mat[2][2] + v.w*mat[3][2],
- v.x*mat[0][3] + v.y*mat[1][3] + v.z*mat[2][3] + v.w*mat[3][3]
- );
- }
- /** @} */
- /** @} */
- CM_ALLOW_MEMCPY_SERIALIZATION(Matrix4);
- }
- #endif
|