| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809 |
- /*
- -----------------------------------------------------------------------------
- This source file is part of OGRE
- (Object-oriented Graphics Rendering Engine)
- For the latest info, see http://www.ogre3d.org/
- Copyright (c) 2000-2011 Torus Knot Software Ltd
- Permission is hereby granted, free of charge, to any person obtaining a copy
- of this software and associated documentation files (the "Software"), to deal
- in the Software without restriction, including without limitation the rights
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- copies of the Software, and to permit persons to whom the Software is
- furnished to do so, subject to the following conditions:
- The above copyright notice and this permission notice shall be included in
- all copies or substantial portions of the Software.
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- THE SOFTWARE.
- -----------------------------------------------------------------------------
- */
- #ifndef __Vector3_H__
- #define __Vector3_H__
- #include "CmPrerequisitesUtil.h"
- #include "CmMath.h"
- #include "CmQuaternion.h"
- namespace CamelotFramework
- {
- /** \addtogroup Core
- * @{
- */
- /** \addtogroup Math
- * @{
- */
- /** Standard 3-dimensional vector.
- @remarks
- A direction in 3D space represented as distances along the 3
- orthogonal axes (x, y, z). Note that positions, directions and
- scaling factors can be represented by a vector, depending on how
- you interpret the values.
- */
- class CM_UTILITY_EXPORT Vector3
- {
- public:
- float x, y, z;
- public:
- inline Vector3()
- {
- }
- inline Vector3( const float fX, const float fY, const float fZ )
- : x( fX ), y( fY ), z( fZ )
- {
- }
- inline explicit Vector3( const float afCoordinate[3] )
- : x( afCoordinate[0] ),
- y( afCoordinate[1] ),
- z( afCoordinate[2] )
- {
- }
- inline explicit Vector3( const int afCoordinate[3] )
- {
- x = (float)afCoordinate[0];
- y = (float)afCoordinate[1];
- z = (float)afCoordinate[2];
- }
- inline explicit Vector3( float* const r )
- : x( r[0] ), y( r[1] ), z( r[2] )
- {
- }
- inline explicit Vector3( const float scaler )
- : x( scaler )
- , y( scaler )
- , z( scaler )
- {
- }
- /** Exchange the contents of this vector with another.
- */
- inline void swap(Vector3& other)
- {
- std::swap(x, other.x);
- std::swap(y, other.y);
- std::swap(z, other.z);
- }
- inline float operator [] ( const size_t i ) const
- {
- assert( i < 3 );
- return *(&x+i);
- }
- inline float& operator [] ( const size_t i )
- {
- assert( i < 3 );
- return *(&x+i);
- }
- /// Pointer accessor for direct copying
- inline float* ptr()
- {
- return &x;
- }
- /// Pointer accessor for direct copying
- inline const float* ptr() const
- {
- return &x;
- }
- /** Assigns the value of the other vector.
- @param
- rkVector The other vector
- */
- inline Vector3& operator = ( const Vector3& rkVector )
- {
- x = rkVector.x;
- y = rkVector.y;
- z = rkVector.z;
- return *this;
- }
- inline Vector3& operator = ( const float fScaler )
- {
- x = fScaler;
- y = fScaler;
- z = fScaler;
- return *this;
- }
- inline bool operator == ( const Vector3& rkVector ) const
- {
- return ( x == rkVector.x && y == rkVector.y && z == rkVector.z );
- }
- inline bool operator != ( const Vector3& rkVector ) const
- {
- return ( x != rkVector.x || y != rkVector.y || z != rkVector.z );
- }
- // arithmetic operations
- inline Vector3 operator + ( const Vector3& rkVector ) const
- {
- return Vector3(
- x + rkVector.x,
- y + rkVector.y,
- z + rkVector.z);
- }
- inline Vector3 operator - ( const Vector3& rkVector ) const
- {
- return Vector3(
- x - rkVector.x,
- y - rkVector.y,
- z - rkVector.z);
- }
- inline Vector3 operator * ( const float fScalar ) const
- {
- return Vector3(
- x * fScalar,
- y * fScalar,
- z * fScalar);
- }
- inline Vector3 operator * ( const Vector3& rhs) const
- {
- return Vector3(
- x * rhs.x,
- y * rhs.y,
- z * rhs.z);
- }
- inline Vector3 operator / ( const float fScalar ) const
- {
- assert( fScalar != 0.0 );
- float fInv = 1.0f / fScalar;
- return Vector3(
- x * fInv,
- y * fInv,
- z * fInv);
- }
- inline Vector3 operator / ( const Vector3& rhs) const
- {
- return Vector3(
- x / rhs.x,
- y / rhs.y,
- z / rhs.z);
- }
- inline const Vector3& operator + () const
- {
- return *this;
- }
- inline Vector3 operator - () const
- {
- return Vector3(-x, -y, -z);
- }
- // overloaded operators to help Vector3
- inline friend Vector3 operator * ( const float fScalar, const Vector3& rkVector )
- {
- return Vector3(
- fScalar * rkVector.x,
- fScalar * rkVector.y,
- fScalar * rkVector.z);
- }
- inline friend Vector3 operator / ( const float fScalar, const Vector3& rkVector )
- {
- return Vector3(
- fScalar / rkVector.x,
- fScalar / rkVector.y,
- fScalar / rkVector.z);
- }
- inline friend Vector3 operator + (const Vector3& lhs, const float rhs)
- {
- return Vector3(
- lhs.x + rhs,
- lhs.y + rhs,
- lhs.z + rhs);
- }
- inline friend Vector3 operator + (const float lhs, const Vector3& rhs)
- {
- return Vector3(
- lhs + rhs.x,
- lhs + rhs.y,
- lhs + rhs.z);
- }
- inline friend Vector3 operator - (const Vector3& lhs, const float rhs)
- {
- return Vector3(
- lhs.x - rhs,
- lhs.y - rhs,
- lhs.z - rhs);
- }
- inline friend Vector3 operator - (const float lhs, const Vector3& rhs)
- {
- return Vector3(
- lhs - rhs.x,
- lhs - rhs.y,
- lhs - rhs.z);
- }
- // arithmetic updates
- inline Vector3& operator += ( const Vector3& rkVector )
- {
- x += rkVector.x;
- y += rkVector.y;
- z += rkVector.z;
- return *this;
- }
- inline Vector3& operator += ( const float fScalar )
- {
- x += fScalar;
- y += fScalar;
- z += fScalar;
- return *this;
- }
- inline Vector3& operator -= ( const Vector3& rkVector )
- {
- x -= rkVector.x;
- y -= rkVector.y;
- z -= rkVector.z;
- return *this;
- }
- inline Vector3& operator -= ( const float fScalar )
- {
- x -= fScalar;
- y -= fScalar;
- z -= fScalar;
- return *this;
- }
- inline Vector3& operator *= ( const float fScalar )
- {
- x *= fScalar;
- y *= fScalar;
- z *= fScalar;
- return *this;
- }
- inline Vector3& operator *= ( const Vector3& rkVector )
- {
- x *= rkVector.x;
- y *= rkVector.y;
- z *= rkVector.z;
- return *this;
- }
- inline Vector3& operator /= ( const float fScalar )
- {
- assert( fScalar != 0.0 );
- float fInv = 1.0f / fScalar;
- x *= fInv;
- y *= fInv;
- z *= fInv;
- return *this;
- }
- inline Vector3& operator /= ( const Vector3& rkVector )
- {
- x /= rkVector.x;
- y /= rkVector.y;
- z /= rkVector.z;
- return *this;
- }
- /** Returns the length (magnitude) of the vector.
- @warning
- This operation requires a square root and is expensive in
- terms of CPU operations. If you don't need to know the exact
- length (e.g. for just comparing lengths) use squaredLength()
- instead.
- */
- inline float length () const
- {
- return Math::Sqrt( x * x + y * y + z * z );
- }
- /** Returns the square of the length(magnitude) of the vector.
- @remarks
- This method is for efficiency - calculating the actual
- length of a vector requires a square root, which is expensive
- in terms of the operations required. This method returns the
- square of the length of the vector, i.e. the same as the
- length but before the square root is taken. Use this if you
- want to find the longest / shortest vector without incurring
- the square root.
- */
- inline float squaredLength () const
- {
- return x * x + y * y + z * z;
- }
- /** Returns the distance to another vector.
- @warning
- This operation requires a square root and is expensive in
- terms of CPU operations. If you don't need to know the exact
- distance (e.g. for just comparing distances) use squaredDistance()
- instead.
- */
- inline float distance(const Vector3& rhs) const
- {
- return (*this - rhs).length();
- }
- /** Returns the square of the distance to another vector.
- @remarks
- This method is for efficiency - calculating the actual
- distance to another vector requires a square root, which is
- expensive in terms of the operations required. This method
- returns the square of the distance to another vector, i.e.
- the same as the distance but before the square root is taken.
- Use this if you want to find the longest / shortest distance
- without incurring the square root.
- */
- inline float squaredDistance(const Vector3& rhs) const
- {
- return (*this - rhs).squaredLength();
- }
- /** Calculates the dot (scalar) product of this vector with another.
- @remarks
- The dot product can be used to calculate the angle between 2
- vectors. If both are unit vectors, the dot product is the
- cosine of the angle; otherwise the dot product must be
- divided by the product of the lengths of both vectors to get
- the cosine of the angle. This result can further be used to
- calculate the distance of a point from a plane.
- @param
- vec Vector with which to calculate the dot product (together
- with this one).
- @returns
- A float representing the dot product value.
- */
- inline float dotProduct(const Vector3& vec) const
- {
- return x * vec.x + y * vec.y + z * vec.z;
- }
- /** Calculates the absolute dot (scalar) product of this vector with another.
- @remarks
- This function work similar dotProduct, except it use absolute value
- of each component of the vector to computing.
- @param
- vec Vector with which to calculate the absolute dot product (together
- with this one).
- @returns
- A float representing the absolute dot product value.
- */
- inline float absDotProduct(const Vector3& vec) const
- {
- return Math::Abs(x * vec.x) + Math::Abs(y * vec.y) + Math::Abs(z * vec.z);
- }
- /** Normalises the vector.
- @remarks
- This method normalises the vector such that it's
- length / magnitude is 1. The result is called a unit vector.
- @note
- This function will not crash for zero-sized vectors, but there
- will be no changes made to their components.
- @returns The previous length of the vector.
- */
- inline float normalize()
- {
- float fLength = Math::Sqrt( x * x + y * y + z * z );
- // Will also work for zero-sized vectors, but will change nothing
- if ( fLength > 1e-08 )
- {
- float fInvLength = 1.0f / fLength;
- x *= fInvLength;
- y *= fInvLength;
- z *= fInvLength;
- }
- return fLength;
- }
- /** Calculates the cross-product of 2 vectors, i.e. the vector that
- lies perpendicular to them both.
- @remarks
- The cross-product is normally used to calculate the normal
- vector of a plane, by calculating the cross-product of 2
- non-equivalent vectors which lie on the plane (e.g. 2 edges
- of a triangle).
- @param
- vec Vector which, together with this one, will be used to
- calculate the cross-product.
- @returns
- A vector which is the result of the cross-product. This
- vector will <b>NOT</b> be normalised, to maximise efficiency
- - call Vector3::normalise on the result if you wish this to
- be done. As for which side the resultant vector will be on, the
- returned vector will be on the side from which the arc from 'this'
- to rkVector is anticlockwise, e.g. UNIT_Y.crossProduct(UNIT_Z)
- = UNIT_X, whilst UNIT_Z.crossProduct(UNIT_Y) = -UNIT_X.
- This is because engine uses a right-handed coordinate system.
- @par
- For a clearer explanation, look a the left and the bottom edges
- of your monitor's screen. Assume that the first vector is the
- left edge and the second vector is the bottom edge, both of
- them starting from the lower-left corner of the screen. The
- resulting vector is going to be perpendicular to both of them
- and will go <i>inside</i> the screen, towards the cathode tube
- (assuming you're using a CRT monitor, of course).
- */
- inline Vector3 crossProduct( const Vector3& rkVector ) const
- {
- return Vector3(
- y * rkVector.z - z * rkVector.y,
- z * rkVector.x - x * rkVector.z,
- x * rkVector.y - y * rkVector.x);
- }
- /** Returns a vector at a point half way between this and the passed
- in vector.
- */
- inline Vector3 midPoint( const Vector3& vec ) const
- {
- return Vector3(
- ( x + vec.x ) * 0.5f,
- ( y + vec.y ) * 0.5f,
- ( z + vec.z ) * 0.5f );
- }
- /** Returns true if the vector's scalar components are all greater
- that the ones of the vector it is compared against.
- */
- inline bool operator < ( const Vector3& rhs ) const
- {
- if( x < rhs.x && y < rhs.y && z < rhs.z )
- return true;
- return false;
- }
- /** Returns true if the vector's scalar components are all smaller
- that the ones of the vector it is compared against.
- */
- inline bool operator > ( const Vector3& rhs ) const
- {
- if( x > rhs.x && y > rhs.y && z > rhs.z )
- return true;
- return false;
- }
- /** Sets this vector's components to the minimum of its own and the
- ones of the passed in vector.
- @remarks
- 'Minimum' in this case means the combination of the lowest
- value of x, y and z from both vectors. Lowest is taken just
- numerically, not magnitude, so -1 < 0.
- */
- inline void makeFloor( const Vector3& cmp )
- {
- if( cmp.x < x ) x = cmp.x;
- if( cmp.y < y ) y = cmp.y;
- if( cmp.z < z ) z = cmp.z;
- }
- /** Sets this vector's components to the maximum of its own and the
- ones of the passed in vector.
- @remarks
- 'Maximum' in this case means the combination of the highest
- value of x, y and z from both vectors. Highest is taken just
- numerically, not magnitude, so 1 > -3.
- */
- inline void makeCeil( const Vector3& cmp )
- {
- if( cmp.x > x ) x = cmp.x;
- if( cmp.y > y ) y = cmp.y;
- if( cmp.z > z ) z = cmp.z;
- }
- /** Generates a vector perpendicular to this vector (eg an 'up' vector).
- @remarks
- This method will return a vector which is perpendicular to this
- vector. There are an infinite number of possibilities but this
- method will guarantee to generate one of them. If you need more
- control you should use the Quaternion class.
- */
- inline Vector3 perpendicular(void) const
- {
- static const float fSquareZero = (float)(1e-06 * 1e-06);
- Vector3 perp = this->crossProduct( Vector3::UNIT_X );
- // Check length
- if( perp.squaredLength() < fSquareZero )
- {
- /* This vector is the Y axis multiplied by a scalar, so we have
- to use another axis.
- */
- perp = this->crossProduct( Vector3::UNIT_Y );
- }
- perp.normalize();
- return perp;
- }
- /** Generates a new random vector which deviates from this vector by a
- given angle in a random direction.
- @remarks
- This method assumes that the random number generator has already
- been seeded appropriately.
- @param
- angle The angle at which to deviate
- @param
- up Any vector perpendicular to this one (which could generated
- by cross-product of this vector and any other non-colinear
- vector). If you choose not to provide this the function will
- derive one on it's own, however if you provide one yourself the
- function will be faster (this allows you to reuse up vectors if
- you call this method more than once)
- @returns
- A random vector which deviates from this vector by angle. This
- vector will not be normalised, normalise it if you wish
- afterwards.
- */
- inline Vector3 randomDeviant(
- const Radian& angle,
- const Vector3& up = Vector3::ZERO ) const
- {
- Vector3 newUp;
- if (up == Vector3::ZERO)
- {
- // Generate an up vector
- newUp = this->perpendicular();
- }
- else
- {
- newUp = up;
- }
- // Rotate up vector by random amount around this
- Quaternion q;
- q.FromAngleAxis( Radian(Math::UnitRandom() * Math::TWO_PI), *this );
- newUp = q * newUp;
- // Finally rotate this by given angle around randomised up
- q.FromAngleAxis( angle, newUp );
- return q * (*this);
- }
- /** Gets the angle between 2 vectors.
- @remarks
- Vectors do not have to be unit-length but must represent directions.
- */
- inline Radian angleBetween(const Vector3& dest)
- {
- float lenProduct = length() * dest.length();
- // Divide by zero check
- if(lenProduct < 1e-6f)
- lenProduct = 1e-6f;
- float f = dotProduct(dest) / lenProduct;
- f = Math::Clamp(f, (float)-1.0, (float)1.0);
- return Math::ACos(f);
- }
- /** Gets the shortest arc quaternion to rotate this vector to the destination
- vector.
- @remarks
- If you call this with a dest vector that is close to the inverse
- of this vector, we will rotate 180 degrees around the 'fallbackAxis'
- (if specified, or a generated axis if not) since in this case
- ANY axis of rotation is valid.
- */
- Quaternion getRotationTo(const Vector3& dest,
- const Vector3& fallbackAxis = Vector3::ZERO) const
- {
- // Based on Stan Melax's article in Game Programming Gems
- Quaternion q;
- // Copy, since cannot modify local
- Vector3 v0 = *this;
- Vector3 v1 = dest;
- v0.normalize();
- v1.normalize();
- float d = v0.dotProduct(v1);
- // If dot == 1, vectors are the same
- if (d >= 1.0f)
- {
- return Quaternion::IDENTITY;
- }
- if (d < (1e-6f - 1.0f))
- {
- if (fallbackAxis != Vector3::ZERO)
- {
- // rotate 180 degrees about the fallback axis
- q.FromAngleAxis(Radian(Math::PI), fallbackAxis);
- }
- else
- {
- // Generate an axis
- Vector3 axis = Vector3::UNIT_X.crossProduct(*this);
- if (axis.isZeroLength()) // pick another if colinear
- axis = Vector3::UNIT_Y.crossProduct(*this);
- axis.normalize();
- q.FromAngleAxis(Radian(Math::PI), axis);
- }
- }
- else
- {
- float s = Math::Sqrt( (1+d)*2 );
- float invs = 1 / s;
- Vector3 c = v0.crossProduct(v1);
- q.x = c.x * invs;
- q.y = c.y * invs;
- q.z = c.z * invs;
- q.w = s * 0.5f;
- q.normalize();
- }
- return q;
- }
- /** Returns true if this vector is zero length. */
- inline bool isZeroLength(void) const
- {
- float sqlen = (x * x) + (y * y) + (z * z);
- return (sqlen < (1e-06 * 1e-06));
- }
- /** As normalise, except that this vector is unaffected and the
- normalised vector is returned as a copy. */
- inline Vector3 normalizedCopy(void) const
- {
- Vector3 ret = *this;
- ret.normalize();
- return ret;
- }
- /** Calculates a reflection vector to the plane with the given normal .
- @remarks NB assumes 'this' is pointing AWAY FROM the plane, invert if it is not.
- */
- inline Vector3 reflect(const Vector3& normal) const
- {
- return Vector3( *this - ( 2 * this->dotProduct(normal) * normal ) );
- }
- /** Returns whether this vector is within a positional tolerance
- of another vector.
- @param rhs The vector to compare with
- @param tolerance The amount that each element of the vector may vary by
- and still be considered equal
- */
- inline bool positionEquals(const Vector3& rhs, float tolerance = 1e-03) const
- {
- return Math::RealEqual(x, rhs.x, tolerance) &&
- Math::RealEqual(y, rhs.y, tolerance) &&
- Math::RealEqual(z, rhs.z, tolerance);
- }
- /** Returns whether this vector is within a positional tolerance
- of another vector, also take scale of the vectors into account.
- @param rhs The vector to compare with
- @param tolerance The amount (related to the scale of vectors) that distance
- of the vector may vary by and still be considered close
- */
- inline bool positionCloses(const Vector3& rhs, float tolerance = 1e-03f) const
- {
- return squaredDistance(rhs) <=
- (squaredLength() + rhs.squaredLength()) * tolerance;
- }
- /** Returns whether this vector is within a directional tolerance
- of another vector.
- @param rhs The vector to compare with
- @param tolerance The maximum angle by which the vectors may vary and
- still be considered equal
- @note Both vectors should be normalised.
- */
- inline bool directionEquals(const Vector3& rhs,
- const Radian& tolerance) const
- {
- float dot = dotProduct(rhs);
- Radian angle = Math::ACos(dot);
- return Math::Abs(angle.valueRadians()) <= tolerance.valueRadians();
- }
- /// Check whether this vector contains valid values
- inline bool isNaN() const
- {
- return Math::isNaN(x) || Math::isNaN(y) || Math::isNaN(z);
- }
- static Vector3 min(const Vector3& a, const Vector3& b)
- {
- return Vector3(std::min(a.x, b.x), std::min(a.y, b.y), std::min(a.z, b.z));
- }
- static Vector3 max(const Vector3& a, const Vector3& b)
- {
- return Vector3(std::max(a.x, b.x), std::max(a.y, b.y), std::max(a.z, b.z));
- }
- // special points
- static const Vector3 ZERO;
- static const Vector3 UNIT_X;
- static const Vector3 UNIT_Y;
- static const Vector3 UNIT_Z;
- static const Vector3 RIGHT;
- static const Vector3 UP;
- static const Vector3 FORWARD;
- static const Vector3 NEGATIVE_UNIT_X;
- static const Vector3 NEGATIVE_UNIT_Y;
- static const Vector3 NEGATIVE_UNIT_Z;
- static const Vector3 UNIT_SCALE;
- /** Function for writing to a stream.
- */
- inline CM_UTILITY_EXPORT friend std::ostream& operator <<
- ( std::ostream& o, const Vector3& v )
- {
- o << "Vector3(" << v.x << ", " << v.y << ", " << v.z << ")";
- return o;
- }
- };
- /** @} */
- /** @} */
- CM_ALLOW_MEMCPY_SERIALIZATION(Vector3);
- }
- #endif
|