BsPhysX.cpp 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206
  1. #include "BsPhysX.h"
  2. #include "PxPhysicsAPI.h"
  3. #include "BsPhysXMaterial.h"
  4. #include "BsPhysXMesh.h"
  5. #include "BsPhysXRigidbody.h"
  6. #include "BsPhysXBoxCollider.h"
  7. #include "BsPhysXSphereCollider.h"
  8. #include "BsPhysXPlaneCollider.h"
  9. #include "BsPhysXCapsuleCollider.h"
  10. #include "BsPhysXMeshCollider.h"
  11. #include "BsPhysXFixedJoint.h"
  12. #include "BsPhysXDistanceJoint.h"
  13. #include "BsPhysXHingeJoint.h"
  14. #include "BsPhysXSphericalJoint.h"
  15. #include "BsPhysXSliderJoint.h"
  16. #include "BsPhysXD6Joint.h"
  17. #include "BsPhysXCharacterController.h"
  18. #include "BsTaskScheduler.h"
  19. #include "BsCCollider.h"
  20. #include "BsFPhysXCollider.h"
  21. #include "BsTime.h"
  22. #include "Bsvector3.h"
  23. #include "BsAABox.h"
  24. #include "BsCapsule.h"
  25. #include "foundation\PxTransform.h"
  26. using namespace physx;
  27. namespace BansheeEngine
  28. {
  29. class PhysXAllocator : public PxAllocatorCallback
  30. {
  31. public:
  32. void* allocate(size_t size, const char*, const char*, int) override
  33. {
  34. void* ptr = bs_alloc_aligned16((UINT32)size);
  35. PX_ASSERT((reinterpret_cast<size_t>(ptr) & 15) == 0);
  36. return ptr;
  37. }
  38. void deallocate(void* ptr) override
  39. {
  40. bs_free_aligned16(ptr);
  41. }
  42. };
  43. class PhysXErrorCallback : public PxErrorCallback
  44. {
  45. public:
  46. void reportError(PxErrorCode::Enum code, const char* message, const char* file, int line) override
  47. {
  48. const char* errorCode = nullptr;
  49. UINT32 severity = 0;
  50. if ((code & PxErrorCode::eDEBUG_INFO) != 0)
  51. {
  52. errorCode = "Info";
  53. severity = 0;
  54. }
  55. if((code & PxErrorCode::eINVALID_PARAMETER) != 0)
  56. {
  57. errorCode = "Invalid parameter";
  58. severity = 1;
  59. }
  60. if ((code & PxErrorCode::eINVALID_OPERATION) != 0)
  61. {
  62. errorCode = "Invalid operation";
  63. severity = 1;
  64. }
  65. if ((code & PxErrorCode::eDEBUG_WARNING) != 0)
  66. {
  67. errorCode = "Generic";
  68. severity = 1;
  69. }
  70. if ((code & PxErrorCode::ePERF_WARNING) != 0)
  71. {
  72. errorCode = "Performance";
  73. severity = 1;
  74. }
  75. if ((code & PxErrorCode::eOUT_OF_MEMORY) != 0)
  76. {
  77. errorCode = "Out of memory";
  78. severity = 2;
  79. }
  80. if ((code & PxErrorCode::eABORT) != 0)
  81. {
  82. errorCode = "Abort";
  83. severity = 2;
  84. }
  85. if ((code & PxErrorCode::eINTERNAL_ERROR) != 0)
  86. {
  87. errorCode = "Internal";
  88. severity = 2;
  89. }
  90. StringStream ss;
  91. switch(severity)
  92. {
  93. case 0:
  94. ss << "PhysX info (" << errorCode << "): " << message << " at " << file << ":" << line;
  95. LOGDBG(ss.str());
  96. break;
  97. case 1:
  98. ss << "PhysX warning (" << errorCode << "): " << message << " at " << file << ":" << line;
  99. LOGWRN(ss.str());
  100. break;
  101. case 2:
  102. ss << "PhysX error (" << errorCode << "): " << message << " at " << file << ":" << line;
  103. LOGERR(ss.str());
  104. BS_ASSERT(false); // Halt execution on debug builds when error occurs
  105. break;
  106. }
  107. }
  108. };
  109. class PhysXEventCallback : public PxSimulationEventCallback
  110. {
  111. void onWake(PxActor** actors, PxU32 count) override { /* Do nothing */ }
  112. void onSleep(PxActor** actors, PxU32 count) override { /* Do nothing */ }
  113. void onTrigger(PxTriggerPair* pairs, PxU32 count) override
  114. {
  115. for (PxU32 i = 0; i < count; i++)
  116. {
  117. const PxTriggerPair& pair = pairs[i];
  118. if (pair.triggerShape->userData == nullptr)
  119. continue;
  120. PhysX::ContactEventType type;
  121. bool ignoreContact = false;
  122. PhysXObjectFilterFlags flags = PhysXObjectFilterFlags(pair.triggerShape->getSimulationFilterData().word2);
  123. if (flags.isSet(PhysXObjectFilterFlag::ReportAll))
  124. {
  125. switch ((UINT32)pair.status)
  126. {
  127. case PxPairFlag::eNOTIFY_TOUCH_FOUND:
  128. type = PhysX::ContactEventType::ContactBegin;
  129. break;
  130. case PxPairFlag::eNOTIFY_TOUCH_PERSISTS:
  131. type = PhysX::ContactEventType::ContactStay;
  132. break;
  133. case PxPairFlag::eNOTIFY_TOUCH_LOST:
  134. type = PhysX::ContactEventType::ContactEnd;
  135. break;
  136. default:
  137. ignoreContact = true;
  138. break;
  139. }
  140. }
  141. else if (flags.isSet(PhysXObjectFilterFlag::ReportBasic))
  142. {
  143. switch ((UINT32)pair.status)
  144. {
  145. case PxPairFlag::eNOTIFY_TOUCH_FOUND:
  146. type = PhysX::ContactEventType::ContactBegin;
  147. break;
  148. case PxPairFlag::eNOTIFY_TOUCH_LOST:
  149. type = PhysX::ContactEventType::ContactEnd;
  150. break;
  151. default:
  152. ignoreContact = true;
  153. break;
  154. }
  155. }
  156. else
  157. ignoreContact = true;
  158. if (ignoreContact)
  159. continue;
  160. PhysX::TriggerEvent event;
  161. event.trigger = (Collider*)pair.triggerShape->userData;
  162. event.other = (Collider*)pair.otherShape->userData;
  163. event.type = type;
  164. gPhysX()._reportTriggerEvent(event);
  165. }
  166. }
  167. void onContact(const PxContactPairHeader& pairHeader, const PxContactPair* pairs, PxU32 count) override
  168. {
  169. for (PxU32 i = 0; i < count; i++)
  170. {
  171. const PxContactPair& pair = pairs[i];
  172. PhysX::ContactEventType type;
  173. bool ignoreContact = false;
  174. switch((UINT32)pair.events)
  175. {
  176. case PxPairFlag::eNOTIFY_TOUCH_FOUND:
  177. type = PhysX::ContactEventType::ContactBegin;
  178. break;
  179. case PxPairFlag::eNOTIFY_TOUCH_PERSISTS:
  180. type = PhysX::ContactEventType::ContactStay;
  181. break;
  182. case PxPairFlag::eNOTIFY_TOUCH_LOST:
  183. type = PhysX::ContactEventType::ContactEnd;
  184. break;
  185. default:
  186. ignoreContact = true;
  187. break;
  188. }
  189. if (ignoreContact)
  190. continue;
  191. PhysX::ContactEvent event;
  192. event.type = type;
  193. PxU32 contactCount = pair.contactCount;
  194. const PxU8* stream = pair.contactStream;
  195. PxU16 streamSize = pair.contactStreamSize;
  196. if (contactCount > 0 && streamSize > 0)
  197. {
  198. PxU32 contactIdx = 0;
  199. PxContactStreamIterator iter((PxU8*)stream, streamSize);
  200. stream += ((streamSize + 15) & ~15);
  201. const PxReal* impulses = reinterpret_cast<const PxReal*>(stream);
  202. PxU32 hasImpulses = (pair.flags & PxContactPairFlag::eINTERNAL_HAS_IMPULSES);
  203. while (iter.hasNextPatch())
  204. {
  205. iter.nextPatch();
  206. while (iter.hasNextContact())
  207. {
  208. iter.nextContact();
  209. ContactPoint point;
  210. point.position = fromPxVector(iter.getContactPoint());
  211. point.separation = iter.getSeparation();
  212. point.normal = fromPxVector(iter.getContactNormal());
  213. if (hasImpulses)
  214. point.impulse = impulses[contactIdx];
  215. else
  216. point.impulse = 0.0f;
  217. event.points.push_back(point);
  218. contactIdx++;
  219. }
  220. }
  221. }
  222. event.colliderA = (Collider*)pair.shapes[0]->userData;
  223. event.colliderB = (Collider*)pair.shapes[1]->userData;
  224. gPhysX()._reportContactEvent(event);
  225. }
  226. }
  227. void onConstraintBreak(PxConstraintInfo* constraints, PxU32 count) override
  228. {
  229. for (UINT32 i = 0; i < count; i++)
  230. {
  231. PxConstraintInfo& constraintInfo = constraints[i];
  232. if (constraintInfo.type != PxConstraintExtIDs::eJOINT)
  233. continue;
  234. PxJoint* pxJoint = (PxJoint*)constraintInfo.externalReference;
  235. PhysX::JointBreakEvent event;
  236. event.joint = (Joint*)pxJoint->userData;
  237. if(event.joint != nullptr)
  238. gPhysX()._reportJointBreakEvent(event);
  239. }
  240. }
  241. };
  242. class PhysXCPUDispatcher : public PxCpuDispatcher
  243. {
  244. public:
  245. void submitTask(PxBaseTask& physxTask) override
  246. {
  247. // Note: Banshee's task scheduler is pretty low granularity. Consider a better task manager in case PhysX ends
  248. // up submitting many tasks.
  249. // - PhysX's task manager doesn't seem much lighter either. But perhaps I can at least create a task pool to
  250. // avoid allocating them constantly.
  251. auto runTask = [&]() { physxTask.run(); physxTask.release(); };
  252. TaskPtr task = Task::create("PhysX", runTask);
  253. TaskScheduler::instance().addTask(task);
  254. }
  255. PxU32 getWorkerCount() const override
  256. {
  257. return (PxU32)TaskScheduler::instance().getNumWorkers();
  258. }
  259. };
  260. class PhysXBroadPhaseCallback : public PxBroadPhaseCallback
  261. {
  262. void onObjectOutOfBounds(PxShape& shape, PxActor& actor) override
  263. {
  264. Collider* collider = (Collider*)shape.userData;
  265. if (collider != nullptr)
  266. LOGWRN("Physics object out of bounds. Consider increasing broadphase region!");
  267. }
  268. void onObjectOutOfBounds(PxAggregate& aggregate) override { /* Do nothing */ }
  269. };
  270. PxFilterFlags PhysXFilterShader(PxFilterObjectAttributes attr0, PxFilterData data0, PxFilterObjectAttributes attr1,
  271. PxFilterData data1, PxPairFlags& pairFlags, const void* constantBlock, PxU32 constantBlockSize)
  272. {
  273. PhysXObjectFilterFlags flags0 = PhysXObjectFilterFlags(data0.word2);
  274. PhysXObjectFilterFlags flags1 = PhysXObjectFilterFlags(data1.word2);
  275. if (flags0.isSet(PhysXObjectFilterFlag::ReportAll) || flags1.isSet(PhysXObjectFilterFlag::ReportAll))
  276. pairFlags |= PxPairFlag::eNOTIFY_TOUCH_FOUND | PxPairFlag::eNOTIFY_TOUCH_LOST | PxPairFlag::eNOTIFY_TOUCH_PERSISTS | PxPairFlag::eNOTIFY_CONTACT_POINTS;
  277. else if (flags0.isSet(PhysXObjectFilterFlag::ReportBasic) || flags1.isSet(PhysXObjectFilterFlag::ReportBasic))
  278. pairFlags |= PxPairFlag::eNOTIFY_TOUCH_FOUND | PxPairFlag::eNOTIFY_TOUCH_LOST | PxPairFlag::eNOTIFY_CONTACT_POINTS;
  279. if (PxFilterObjectIsTrigger(attr0) || PxFilterObjectIsTrigger(attr1))
  280. {
  281. if (!pairFlags)
  282. return PxFilterFlag::eSUPPRESS; // Trigger with no notify flags
  283. pairFlags |= PxPairFlag::eDETECT_DISCRETE_CONTACT;
  284. return PxFilterFlags();
  285. }
  286. UINT64 groupA = *(UINT64*)&data0.word0;
  287. UINT64 groupB = *(UINT64*)&data1.word0;
  288. bool canCollide = gPhysics().isCollisionEnabled(groupA, groupB);
  289. if (!canCollide)
  290. return PxFilterFlag::eSUPPRESS;
  291. if (flags0.isSet(PhysXObjectFilterFlag::CCD) || flags1.isSet(PhysXObjectFilterFlag::CCD))
  292. pairFlags |= PxPairFlag::eDETECT_CCD_CONTACT;
  293. pairFlags |= PxPairFlag::eSOLVE_CONTACT | PxPairFlag::eDETECT_DISCRETE_CONTACT;
  294. return PxFilterFlags();
  295. }
  296. void parseHit(const PxRaycastHit& input, PhysicsQueryHit& output)
  297. {
  298. output.point = fromPxVector(input.position);
  299. output.normal = fromPxVector(input.normal);
  300. output.distance = input.distance;
  301. output.triangleIdx = input.faceIndex;
  302. output.uv = Vector2(input.u, input.v);
  303. output.colliderRaw = (Collider*)input.shape->userData;
  304. if (output.colliderRaw != nullptr)
  305. {
  306. CCollider* component = (CCollider*)output.colliderRaw->_getOwner(PhysicsOwnerType::Component);
  307. if (component != nullptr)
  308. output.collider = component->getHandle();
  309. }
  310. }
  311. void parseHit(const PxSweepHit& input, PhysicsQueryHit& output)
  312. {
  313. output.point = fromPxVector(input.position);
  314. output.normal = fromPxVector(input.normal);
  315. output.distance = input.distance;
  316. output.triangleIdx = input.faceIndex;
  317. output.colliderRaw = (Collider*)input.shape->userData;
  318. if (output.colliderRaw != nullptr)
  319. {
  320. CCollider* component = (CCollider*)output.colliderRaw->_getOwner(PhysicsOwnerType::Component);
  321. if (component != nullptr)
  322. output.collider = component->getHandle();
  323. }
  324. }
  325. struct PhysXRaycastQueryCallback : PxRaycastCallback
  326. {
  327. static const int MAX_HITS = 32;
  328. PxRaycastHit buffer[MAX_HITS];
  329. Vector<PhysicsQueryHit> data;
  330. PhysXRaycastQueryCallback()
  331. :PxRaycastCallback(buffer, MAX_HITS)
  332. { }
  333. PxAgain processTouches(const PxRaycastHit* buffer, PxU32 nbHits) override
  334. {
  335. for (PxU32 i = 0; i < nbHits; i++)
  336. {
  337. data.push_back(PhysicsQueryHit());
  338. parseHit(buffer[i], data.back());
  339. }
  340. return true;
  341. }
  342. };
  343. struct PhysXSweepQueryCallback : PxSweepCallback
  344. {
  345. static const int MAX_HITS = 32;
  346. PxSweepHit buffer[MAX_HITS];
  347. Vector<PhysicsQueryHit> data;
  348. PhysXSweepQueryCallback()
  349. :PxSweepCallback(buffer, MAX_HITS)
  350. { }
  351. PxAgain processTouches(const PxSweepHit* buffer, PxU32 nbHits) override
  352. {
  353. for (PxU32 i = 0; i < nbHits; i++)
  354. {
  355. data.push_back(PhysicsQueryHit());
  356. parseHit(buffer[i], data.back());
  357. }
  358. return true;
  359. }
  360. };
  361. struct PhysXOverlapQueryCallback : PxOverlapCallback
  362. {
  363. static const int MAX_HITS = 32;
  364. PxOverlapHit buffer[MAX_HITS];
  365. Vector<Collider*> data;
  366. PhysXOverlapQueryCallback()
  367. :PxOverlapCallback(buffer, MAX_HITS)
  368. { }
  369. PxAgain processTouches(const PxOverlapHit* buffer, PxU32 nbHits) override
  370. {
  371. for (PxU32 i = 0; i < nbHits; i++)
  372. data.push_back((Collider*)buffer[i].shape->userData);
  373. return true;
  374. }
  375. };
  376. static PhysXAllocator gPhysXAllocator;
  377. static PhysXErrorCallback gPhysXErrorHandler;
  378. static PhysXCPUDispatcher gPhysXCPUDispatcher;
  379. static PhysXEventCallback gPhysXEventCallback;
  380. static PhysXBroadPhaseCallback gPhysXBroadphaseCallback;
  381. static const UINT32 SIZE_16K = 1 << 14;
  382. const UINT32 PhysX::SCRATCH_BUFFER_SIZE = SIZE_16K * 64; // 1MB by default
  383. const UINT32 PhysX::MAX_ITERATIONS_PER_FRAME = 4; // At 60 physics updates per second this would mean user is running at 15fps
  384. PhysX::PhysX(const PHYSICS_INIT_DESC& input)
  385. :Physics(input)
  386. {
  387. mScale.length = input.typicalLength;
  388. mScale.speed = input.typicalSpeed;
  389. mFoundation = PxCreateFoundation(PX_PHYSICS_VERSION, gPhysXAllocator, gPhysXErrorHandler);
  390. mPhysics = PxCreateBasePhysics(PX_PHYSICS_VERSION, *mFoundation, mScale);
  391. PxRegisterArticulations(*mPhysics);
  392. if (input.initCooking)
  393. {
  394. // Note: PhysX supports cooking for specific platforms to make the generated results better. Consider
  395. // allowing the meshes to be re-cooked when target platform is changed. Right now we just use the default value.
  396. PxCookingParams cookingParams(mScale);
  397. mCooking = PxCreateCooking(PX_PHYSICS_VERSION, *mFoundation, cookingParams);
  398. }
  399. PxSceneDesc sceneDesc(mScale); // TODO - Test out various other parameters provided by scene desc
  400. sceneDesc.gravity = toPxVector(input.gravity);
  401. sceneDesc.cpuDispatcher = &gPhysXCPUDispatcher;
  402. sceneDesc.filterShader = PhysXFilterShader;
  403. sceneDesc.simulationEventCallback = &gPhysXEventCallback;
  404. sceneDesc.broadPhaseCallback = &gPhysXBroadphaseCallback;
  405. // Optionally: eENABLE_KINEMATIC_STATIC_PAIRS, eENABLE_KINEMATIC_PAIRS, eENABLE_PCM
  406. sceneDesc.flags = PxSceneFlag::eENABLE_ACTIVETRANSFORMS;
  407. if (input.flags.isSet(PhysicsFlag::CCD_Enable))
  408. sceneDesc.flags |= PxSceneFlag::eENABLE_CCD;
  409. // Optionally: eMBP
  410. sceneDesc.broadPhaseType = PxBroadPhaseType::eSAP;
  411. mScene = mPhysics->createScene(sceneDesc);
  412. // Character controller
  413. mCharManager = PxCreateControllerManager(*mScene);
  414. mSimulationStep = input.timeStep;
  415. mDefaultMaterial = mPhysics->createMaterial(0.0f, 0.0f, 0.0f);
  416. }
  417. PhysX::~PhysX()
  418. {
  419. mCharManager->release();
  420. mScene->release();
  421. if (mCooking != nullptr)
  422. mCooking->release();
  423. mPhysics->release();
  424. mFoundation->release();
  425. }
  426. void PhysX::update()
  427. {
  428. mUpdateInProgress = true;
  429. if(mFirstUpdate)
  430. {
  431. mLastSimulationTime = gTime().getTime() - mSimulationStep * 1.01f;
  432. mFirstUpdate = false;
  433. }
  434. float nextFrameTime = mLastSimulationTime + mSimulationStep;
  435. float curFrameTime = gTime().getTime();
  436. if(curFrameTime < nextFrameTime)
  437. {
  438. // TODO - Interpolate rigidbodies but perform no actual simulation
  439. return;
  440. }
  441. float simulationAmount = std::max(curFrameTime - mLastSimulationTime, mSimulationStep); // At least one step
  442. INT32 numIterations = Math::floorToInt(simulationAmount / mSimulationStep);
  443. // If too many iterations are required, increase time step. This should only happen in extreme situations (or when
  444. // debugging).
  445. float step = mSimulationStep;
  446. if (numIterations > MAX_ITERATIONS_PER_FRAME)
  447. step = (simulationAmount / MAX_ITERATIONS_PER_FRAME) * 0.99f;
  448. UINT32 iterationCount = 0;
  449. while (simulationAmount >= step) // In case we're running really slow multiple updates might be needed
  450. {
  451. // Note: Consider delaying fetchResults one frame. This could improve performance because Physics update would be
  452. // able to run parallel to the simulation thread, but at a cost to input latency.
  453. bs_frame_mark();
  454. UINT8* scratchBuffer = bs_frame_alloc_aligned(SCRATCH_BUFFER_SIZE, 16);
  455. mScene->simulate(step, nullptr, scratchBuffer, SCRATCH_BUFFER_SIZE);
  456. simulationAmount -= step;
  457. mLastSimulationTime += step;
  458. UINT32 errorState;
  459. if(!mScene->fetchResults(true, &errorState))
  460. {
  461. LOGWRN("Physics simulation failed. Error code: " + toString(errorState));
  462. bs_frame_free_aligned(scratchBuffer);
  463. bs_frame_clear();
  464. iterationCount++;
  465. continue;
  466. }
  467. bs_frame_free_aligned(scratchBuffer);
  468. bs_frame_clear();
  469. iterationCount++;
  470. }
  471. // Update rigidbodies with new transforms
  472. PxU32 numActiveTransforms;
  473. const PxActiveTransform* activeTransforms = mScene->getActiveTransforms(numActiveTransforms);
  474. for (PxU32 i = 0; i < numActiveTransforms; i++)
  475. {
  476. Rigidbody* rigidbody = static_cast<Rigidbody*>(activeTransforms[i].userData);
  477. // Note: This should never happen, as actors gets their userData set to null when they're destroyed. However
  478. // in some cases PhysX seems to keep those actors alive for a frame or few, and reports their state here. Until
  479. // I find out why I need to perform this check.
  480. if(activeTransforms[i].actor->userData == nullptr)
  481. continue;
  482. const PxTransform& transform = activeTransforms[i].actor2World;
  483. // Note: Make this faster, avoid dereferencing Rigidbody and attempt to access pos/rot destination directly,
  484. // use non-temporal writes
  485. rigidbody->_setTransform(fromPxVector(transform.p), fromPxQuaternion(transform.q));
  486. }
  487. // TODO - Consider extrapolating for the remaining "simulationAmount" value
  488. mUpdateInProgress = false;
  489. triggerEvents();
  490. }
  491. void PhysX::_reportContactEvent(const ContactEvent& event)
  492. {
  493. mContactEvents.push_back(event);
  494. }
  495. void PhysX::_reportTriggerEvent(const TriggerEvent& event)
  496. {
  497. mTriggerEvents.push_back(event);
  498. }
  499. void PhysX::_reportJointBreakEvent(const JointBreakEvent& event)
  500. {
  501. mJointBreakEvents.push_back(event);
  502. }
  503. void PhysX::triggerEvents()
  504. {
  505. CollisionData data;
  506. for(auto& entry : mTriggerEvents)
  507. {
  508. data.collidersRaw[0] = entry.trigger;
  509. data.collidersRaw[1] = entry.other;
  510. switch (entry.type)
  511. {
  512. case ContactEventType::ContactBegin:
  513. entry.trigger->onCollisionBegin(data);
  514. break;
  515. case ContactEventType::ContactStay:
  516. entry.trigger->onCollisionStay(data);
  517. break;
  518. case ContactEventType::ContactEnd:
  519. entry.trigger->onCollisionEnd(data);
  520. break;
  521. }
  522. }
  523. auto notifyContact = [&](Collider* obj, Collider* other, ContactEventType type,
  524. const Vector<ContactPoint>& points, bool flipNormals = false)
  525. {
  526. data.collidersRaw[0] = obj;
  527. data.collidersRaw[1] = other;
  528. data.contactPoints = points;
  529. if(flipNormals)
  530. {
  531. for (auto& point : data.contactPoints)
  532. point.normal = -point.normal;
  533. }
  534. Rigidbody* rigidbody = obj->getRigidbody();
  535. if(rigidbody != nullptr)
  536. {
  537. switch (type)
  538. {
  539. case ContactEventType::ContactBegin:
  540. rigidbody->onCollisionBegin(data);
  541. break;
  542. case ContactEventType::ContactStay:
  543. rigidbody->onCollisionStay(data);
  544. break;
  545. case ContactEventType::ContactEnd:
  546. rigidbody->onCollisionEnd(data);
  547. break;
  548. }
  549. }
  550. else
  551. {
  552. switch (type)
  553. {
  554. case ContactEventType::ContactBegin:
  555. obj->onCollisionBegin(data);
  556. break;
  557. case ContactEventType::ContactStay:
  558. obj->onCollisionStay(data);
  559. break;
  560. case ContactEventType::ContactEnd:
  561. obj->onCollisionEnd(data);
  562. break;
  563. }
  564. }
  565. };
  566. for (auto& entry : mContactEvents)
  567. {
  568. if (entry.colliderA != nullptr)
  569. {
  570. CollisionReportMode reportModeA = entry.colliderA->getCollisionReportMode();
  571. if (reportModeA == CollisionReportMode::ReportPersistent)
  572. notifyContact(entry.colliderA, entry.colliderB, entry.type, entry.points, true);
  573. else if (reportModeA == CollisionReportMode::Report && entry.type != ContactEventType::ContactStay)
  574. notifyContact(entry.colliderA, entry.colliderB, entry.type, entry.points, true);
  575. }
  576. if (entry.colliderB != nullptr)
  577. {
  578. CollisionReportMode reportModeB = entry.colliderB->getCollisionReportMode();
  579. if (reportModeB == CollisionReportMode::ReportPersistent)
  580. notifyContact(entry.colliderB, entry.colliderA, entry.type, entry.points, false);
  581. else if (reportModeB == CollisionReportMode::Report && entry.type != ContactEventType::ContactStay)
  582. notifyContact(entry.colliderB, entry.colliderA, entry.type, entry.points, false);
  583. }
  584. }
  585. for(auto& entry : mJointBreakEvents)
  586. {
  587. entry.joint->onJointBreak();
  588. }
  589. mTriggerEvents.clear();
  590. mContactEvents.clear();
  591. mJointBreakEvents.clear();
  592. }
  593. SPtr<PhysicsMaterial> PhysX::createMaterial(float staticFriction, float dynamicFriction, float restitution)
  594. {
  595. return bs_core_ptr_new<PhysXMaterial>(mPhysics, staticFriction, dynamicFriction, restitution);
  596. }
  597. SPtr<PhysicsMesh> PhysX::createMesh(const MeshDataPtr& meshData, PhysicsMeshType type)
  598. {
  599. return bs_core_ptr_new<PhysXMesh>(meshData, type);
  600. }
  601. SPtr<Rigidbody> PhysX::createRigidbody(const HSceneObject& linkedSO)
  602. {
  603. return bs_shared_ptr_new<PhysXRigidbody>(mPhysics, mScene, linkedSO);
  604. }
  605. SPtr<BoxCollider> PhysX::createBoxCollider(const Vector3& extents, const Vector3& position,
  606. const Quaternion& rotation)
  607. {
  608. return bs_shared_ptr_new<PhysXBoxCollider>(mPhysics, position, rotation, extents);
  609. }
  610. SPtr<SphereCollider> PhysX::createSphereCollider(float radius, const Vector3& position, const Quaternion& rotation)
  611. {
  612. return bs_shared_ptr_new<PhysXSphereCollider>(mPhysics, position, rotation, radius);
  613. }
  614. SPtr<PlaneCollider> PhysX::createPlaneCollider(const Vector3& position, const Quaternion& rotation)
  615. {
  616. return bs_shared_ptr_new<PhysXPlaneCollider>(mPhysics, position, rotation);
  617. }
  618. SPtr<CapsuleCollider> PhysX::createCapsuleCollider(float radius, float halfHeight, const Vector3& position,
  619. const Quaternion& rotation)
  620. {
  621. return bs_shared_ptr_new<PhysXCapsuleCollider>(mPhysics, position, rotation, radius, halfHeight);
  622. }
  623. SPtr<MeshCollider> PhysX::createMeshCollider(const Vector3& position, const Quaternion& rotation)
  624. {
  625. return bs_shared_ptr_new<PhysXMeshCollider>(mPhysics, position, rotation);
  626. }
  627. SPtr<FixedJoint> PhysX::createFixedJoint()
  628. {
  629. return bs_shared_ptr_new<PhysXFixedJoint>(mPhysics);
  630. }
  631. SPtr<DistanceJoint> PhysX::createDistanceJoint()
  632. {
  633. return bs_shared_ptr_new<PhysXDistanceJoint>(mPhysics);
  634. }
  635. SPtr<HingeJoint> PhysX::createHingeJoint()
  636. {
  637. return bs_shared_ptr_new<PhysXHingeJoint>(mPhysics);
  638. }
  639. SPtr<SphericalJoint> PhysX::createSphericalJoint()
  640. {
  641. return bs_shared_ptr_new<PhysXSphericalJoint>(mPhysics);
  642. }
  643. SPtr<SliderJoint> PhysX::createSliderJoint()
  644. {
  645. return bs_shared_ptr_new<PhysXSliderJoint>(mPhysics);
  646. }
  647. SPtr<D6Joint> PhysX::createD6Joint()
  648. {
  649. return bs_shared_ptr_new<PhysXD6Joint>(mPhysics);
  650. }
  651. SPtr<CharacterController> PhysX::createCharacterController(const CHAR_CONTROLLER_DESC& desc)
  652. {
  653. return bs_shared_ptr_new<PhysXCharacterController>(mCharManager, desc);
  654. }
  655. Vector<PhysicsQueryHit> PhysX::sweepAll(const PxGeometry& geometry, const PxTransform& tfrm, const Vector3& unitDir,
  656. UINT64 layer, float maxDist) const
  657. {
  658. PhysXSweepQueryCallback output;
  659. PxQueryFilterData filterData;
  660. memcpy(&filterData.data.word0, &layer, sizeof(layer));
  661. mScene->sweep(geometry, tfrm, toPxVector(unitDir), maxDist, output,
  662. PxHitFlag::eDEFAULT | PxHitFlag::eUV, filterData);
  663. return output.data;
  664. }
  665. bool PhysX::sweepAny(const PxGeometry& geometry, const PxTransform& tfrm, const Vector3& unitDir, UINT64 layer,
  666. float maxDist) const
  667. {
  668. PxSweepBuffer output;
  669. PxQueryFilterData filterData;
  670. filterData.flags |= PxQueryFlag::eANY_HIT;
  671. memcpy(&filterData.data.word0, &layer, sizeof(layer));
  672. return mScene->sweep(geometry, tfrm, toPxVector(unitDir), maxDist, output,
  673. PxHitFlag::eDEFAULT | PxHitFlag::eUV | PxHitFlag::eMESH_ANY, filterData);
  674. }
  675. bool PhysX::rayCast(const Vector3& origin, const Vector3& unitDir, PhysicsQueryHit& hit, UINT64 layer, float max) const
  676. {
  677. PxRaycastBuffer output;
  678. PxQueryFilterData filterData;
  679. memcpy(&filterData.data.word0, &layer, sizeof(layer));
  680. bool wasHit = mScene->raycast(toPxVector(origin),
  681. toPxVector(unitDir), max, output, PxHitFlag::eDEFAULT | PxHitFlag::eUV, filterData);
  682. if (wasHit)
  683. parseHit(output.block, hit);
  684. return wasHit;
  685. }
  686. bool PhysX::boxCast(const AABox& box, const Quaternion& rotation, const Vector3& unitDir, PhysicsQueryHit& hit,
  687. UINT64 layer, float max) const
  688. {
  689. PxBoxGeometry geometry(toPxVector(box.getHalfSize()));
  690. PxTransform transform = toPxTransform(box.getCenter(), rotation);
  691. return sweep(geometry, transform, unitDir, hit, layer, max);
  692. }
  693. bool PhysX::sphereCast(const Sphere& sphere, const Vector3& unitDir, PhysicsQueryHit& hit,
  694. UINT64 layer, float max) const
  695. {
  696. PxSphereGeometry geometry(sphere.getRadius());
  697. PxTransform transform = toPxTransform(sphere.getCenter(), Quaternion::IDENTITY);
  698. return sweep(geometry, transform, unitDir, hit, layer, max);
  699. }
  700. bool PhysX::capsuleCast(const Capsule& capsule, const Quaternion& rotation, const Vector3& unitDir,
  701. PhysicsQueryHit& hit, UINT64 layer, float max) const
  702. {
  703. PxCapsuleGeometry geometry(capsule.getRadius(), capsule.getHeight() * 0.5f);
  704. PxTransform transform = toPxTransform(capsule.getCenter(), Quaternion::IDENTITY);
  705. return sweep(geometry, transform, unitDir, hit, layer, max);
  706. }
  707. bool PhysX::convexCast(const HPhysicsMesh& mesh, const Vector3& position, const Quaternion& rotation,
  708. const Vector3& unitDir, PhysicsQueryHit& hit, UINT64 layer, float max) const
  709. {
  710. if (mesh == nullptr)
  711. return false;
  712. if (mesh->getType() != PhysicsMeshType::Convex)
  713. return false;
  714. FPhysXMesh* physxMesh = static_cast<FPhysXMesh*>(mesh->_getInternal());
  715. PxConvexMeshGeometry geometry(physxMesh->_getConvex());
  716. PxTransform transform = toPxTransform(position, rotation);
  717. return sweep(geometry, transform, unitDir, hit, layer, max);
  718. }
  719. Vector<PhysicsQueryHit> PhysX::rayCastAll(const Vector3& origin, const Vector3& unitDir,
  720. UINT64 layer, float max) const
  721. {
  722. PhysXRaycastQueryCallback output;
  723. PxQueryFilterData filterData;
  724. memcpy(&filterData.data.word0, &layer, sizeof(layer));
  725. mScene->raycast(toPxVector(origin), toPxVector(unitDir), max, output,
  726. PxHitFlag::eDEFAULT | PxHitFlag::eUV | PxHitFlag::eMESH_MULTIPLE, filterData);
  727. return output.data;
  728. }
  729. Vector<PhysicsQueryHit> PhysX::boxCastAll(const AABox& box, const Quaternion& rotation,
  730. const Vector3& unitDir, UINT64 layer, float max) const
  731. {
  732. PxBoxGeometry geometry(toPxVector(box.getHalfSize()));
  733. PxTransform transform = toPxTransform(box.getCenter(), rotation);
  734. return sweepAll(geometry, transform, unitDir, layer, max);
  735. }
  736. Vector<PhysicsQueryHit> PhysX::sphereCastAll(const Sphere& sphere, const Vector3& unitDir,
  737. UINT64 layer, float max) const
  738. {
  739. PxSphereGeometry geometry(sphere.getRadius());
  740. PxTransform transform = toPxTransform(sphere.getCenter(), Quaternion::IDENTITY);
  741. return sweepAll(geometry, transform, unitDir, layer, max);
  742. }
  743. Vector<PhysicsQueryHit> PhysX::capsuleCastAll(const Capsule& capsule, const Quaternion& rotation,
  744. const Vector3& unitDir, UINT64 layer, float max) const
  745. {
  746. PxCapsuleGeometry geometry(capsule.getRadius(), capsule.getHeight() * 0.5f);
  747. PxTransform transform = toPxTransform(capsule.getCenter(), Quaternion::IDENTITY);
  748. return sweepAll(geometry, transform, unitDir, layer, max);
  749. }
  750. Vector<PhysicsQueryHit> PhysX::convexCastAll(const HPhysicsMesh& mesh, const Vector3& position,
  751. const Quaternion& rotation, const Vector3& unitDir, UINT64 layer, float max) const
  752. {
  753. if (mesh == nullptr)
  754. return Vector<PhysicsQueryHit>(0);
  755. if (mesh->getType() != PhysicsMeshType::Convex)
  756. return Vector<PhysicsQueryHit>(0);
  757. FPhysXMesh* physxMesh = static_cast<FPhysXMesh*>(mesh->_getInternal());
  758. PxConvexMeshGeometry geometry(physxMesh->_getConvex());
  759. PxTransform transform = toPxTransform(position, rotation);
  760. return sweepAll(geometry, transform, unitDir, layer, max);
  761. }
  762. bool PhysX::rayCastAny(const Vector3& origin, const Vector3& unitDir,
  763. UINT64 layer, float max) const
  764. {
  765. PxRaycastBuffer output;
  766. PxQueryFilterData filterData;
  767. filterData.flags |= PxQueryFlag::eANY_HIT;
  768. memcpy(&filterData.data.word0, &layer, sizeof(layer));
  769. return mScene->raycast(toPxVector(origin),
  770. toPxVector(unitDir), max, output, PxHitFlag::eDEFAULT | PxHitFlag::eUV | PxHitFlag::eMESH_ANY, filterData);
  771. }
  772. bool PhysX::boxCastAny(const AABox& box, const Quaternion& rotation, const Vector3& unitDir,
  773. UINT64 layer, float max) const
  774. {
  775. PxBoxGeometry geometry(toPxVector(box.getHalfSize()));
  776. PxTransform transform = toPxTransform(box.getCenter(), rotation);
  777. return sweepAny(geometry, transform, unitDir, layer, max);
  778. }
  779. bool PhysX::sphereCastAny(const Sphere& sphere, const Vector3& unitDir,
  780. UINT64 layer, float max) const
  781. {
  782. PxSphereGeometry geometry(sphere.getRadius());
  783. PxTransform transform = toPxTransform(sphere.getCenter(), Quaternion::IDENTITY);
  784. return sweepAny(geometry, transform, unitDir, layer, max);
  785. }
  786. bool PhysX::capsuleCastAny(const Capsule& capsule, const Quaternion& rotation, const Vector3& unitDir,
  787. UINT64 layer, float max) const
  788. {
  789. PxCapsuleGeometry geometry(capsule.getRadius(), capsule.getHeight() * 0.5f);
  790. PxTransform transform = toPxTransform(capsule.getCenter(), Quaternion::IDENTITY);
  791. return sweepAny(geometry, transform, unitDir, layer, max);
  792. }
  793. bool PhysX::convexCastAny(const HPhysicsMesh& mesh, const Vector3& position, const Quaternion& rotation,
  794. const Vector3& unitDir, UINT64 layer, float max) const
  795. {
  796. if (mesh == nullptr)
  797. return false;
  798. if (mesh->getType() != PhysicsMeshType::Convex)
  799. return false;
  800. FPhysXMesh* physxMesh = static_cast<FPhysXMesh*>(mesh->_getInternal());
  801. PxConvexMeshGeometry geometry(physxMesh->_getConvex());
  802. PxTransform transform = toPxTransform(position, rotation);
  803. return sweepAny(geometry, transform, unitDir, layer, max);
  804. }
  805. Vector<Collider*> PhysX::_boxOverlap(const AABox& box, const Quaternion& rotation,
  806. UINT64 layer) const
  807. {
  808. PxBoxGeometry geometry(toPxVector(box.getHalfSize()));
  809. PxTransform transform = toPxTransform(box.getCenter(), rotation);
  810. return overlap(geometry, transform, layer);
  811. }
  812. Vector<Collider*> PhysX::_sphereOverlap(const Sphere& sphere, UINT64 layer) const
  813. {
  814. PxSphereGeometry geometry(sphere.getRadius());
  815. PxTransform transform = toPxTransform(sphere.getCenter(), Quaternion::IDENTITY);
  816. return overlap(geometry, transform, layer);
  817. }
  818. Vector<Collider*> PhysX::_capsuleOverlap(const Capsule& capsule, const Quaternion& rotation,
  819. UINT64 layer) const
  820. {
  821. PxCapsuleGeometry geometry(capsule.getRadius(), capsule.getHeight() * 0.5f);
  822. PxTransform transform = toPxTransform(capsule.getCenter(), Quaternion::IDENTITY);
  823. return overlap(geometry, transform, layer);
  824. }
  825. Vector<Collider*> PhysX::_convexOverlap(const HPhysicsMesh& mesh, const Vector3& position,
  826. const Quaternion& rotation, UINT64 layer) const
  827. {
  828. if (mesh == nullptr)
  829. return Vector<Collider*>(0);
  830. if (mesh->getType() != PhysicsMeshType::Convex)
  831. return Vector<Collider*>(0);
  832. FPhysXMesh* physxMesh = static_cast<FPhysXMesh*>(mesh->_getInternal());
  833. PxConvexMeshGeometry geometry(physxMesh->_getConvex());
  834. PxTransform transform = toPxTransform(position, rotation);
  835. return overlap(geometry, transform, layer);
  836. }
  837. bool PhysX::boxOverlapAny(const AABox& box, const Quaternion& rotation, UINT64 layer) const
  838. {
  839. PxBoxGeometry geometry(toPxVector(box.getHalfSize()));
  840. PxTransform transform = toPxTransform(box.getCenter(), rotation);
  841. return overlapAny(geometry, transform, layer);
  842. }
  843. bool PhysX::sphereOverlapAny(const Sphere& sphere, UINT64 layer) const
  844. {
  845. PxSphereGeometry geometry(sphere.getRadius());
  846. PxTransform transform = toPxTransform(sphere.getCenter(), Quaternion::IDENTITY);
  847. return overlapAny(geometry, transform, layer);
  848. }
  849. bool PhysX::capsuleOverlapAny(const Capsule& capsule, const Quaternion& rotation,
  850. UINT64 layer) const
  851. {
  852. PxCapsuleGeometry geometry(capsule.getRadius(), capsule.getHeight() * 0.5f);
  853. PxTransform transform = toPxTransform(capsule.getCenter(), Quaternion::IDENTITY);
  854. return overlapAny(geometry, transform, layer);
  855. }
  856. bool PhysX::convexOverlapAny(const HPhysicsMesh& mesh, const Vector3& position, const Quaternion& rotation,
  857. UINT64 layer) const
  858. {
  859. if (mesh == nullptr)
  860. return false;
  861. if (mesh->getType() != PhysicsMeshType::Convex)
  862. return false;
  863. FPhysXMesh* physxMesh = static_cast<FPhysXMesh*>(mesh->_getInternal());
  864. PxConvexMeshGeometry geometry(physxMesh->_getConvex());
  865. PxTransform transform = toPxTransform(position, rotation);
  866. return overlapAny(geometry, transform, layer);
  867. }
  868. bool PhysX::_rayCast(const Vector3& origin, const Vector3& unitDir, const Collider& collider, PhysicsQueryHit& hit,
  869. float maxDist) const
  870. {
  871. FPhysXCollider* physxCollider = static_cast<FPhysXCollider*>(collider._getInternal());
  872. PxShape* shape = physxCollider->_getShape();
  873. PxTransform transform = toPxTransform(collider.getPosition(), collider.getRotation());
  874. PxRaycastHit hitInfo;
  875. PxU32 maxHits = 1;
  876. bool anyHit = false;
  877. PxHitFlags hitFlags = PxHitFlag::eDEFAULT | PxHitFlag::eUV;
  878. PxU32 hitCount = PxGeometryQuery::raycast(toPxVector(origin), toPxVector(unitDir),
  879. shape->getGeometry().any(), transform,
  880. maxDist, hitFlags, maxHits, &hitInfo, anyHit);
  881. if(hitCount > 0)
  882. parseHit(hitInfo, hit);
  883. return hitCount > 0;
  884. }
  885. bool PhysX::sweep(const PxGeometry& geometry, const PxTransform& tfrm, const Vector3& unitDir,
  886. PhysicsQueryHit& hit, UINT64 layer, float maxDist) const
  887. {
  888. PxSweepBuffer output;
  889. PxQueryFilterData filterData;
  890. memcpy(&filterData.data.word0, &layer, sizeof(layer));
  891. bool wasHit = mScene->sweep(geometry, tfrm, toPxVector(unitDir), maxDist, output,
  892. PxHitFlag::eDEFAULT | PxHitFlag::eUV, filterData);
  893. if (wasHit)
  894. parseHit(output.block, hit);
  895. return wasHit;
  896. }
  897. bool PhysX::overlapAny(const PxGeometry& geometry, const PxTransform& tfrm, UINT64 layer) const
  898. {
  899. PxOverlapBuffer output;
  900. PxQueryFilterData filterData;
  901. filterData.flags |= PxQueryFlag::eANY_HIT;
  902. memcpy(&filterData.data.word0, &layer, sizeof(layer));
  903. return mScene->overlap(geometry, tfrm, output, filterData);
  904. }
  905. Vector<Collider*> PhysX::overlap(const PxGeometry& geometry, const PxTransform& tfrm, UINT64 layer) const
  906. {
  907. PhysXOverlapQueryCallback output;
  908. PxQueryFilterData filterData;
  909. memcpy(&filterData.data.word0, &layer, sizeof(layer));
  910. mScene->overlap(geometry, tfrm, output, filterData);
  911. return output.data;
  912. }
  913. void PhysX::setFlag(PhysicsFlags flag, bool enabled)
  914. {
  915. Physics::setFlag(flag, enabled);
  916. mCharManager->setOverlapRecoveryModule(mFlags.isSet(PhysicsFlag::CCT_OverlapRecovery));
  917. mCharManager->setPreciseSweeps(mFlags.isSet(PhysicsFlag::CCT_PreciseSweeps));
  918. mCharManager->setTessellation(mFlags.isSet(PhysicsFlag::CCT_Tesselation), mTesselationLength);
  919. }
  920. Vector3 PhysX::getGravity() const
  921. {
  922. return fromPxVector(mScene->getGravity());
  923. }
  924. void PhysX::setGravity(const Vector3& gravity)
  925. {
  926. mScene->setGravity(toPxVector(gravity));
  927. }
  928. void PhysX::setMaxTesselationEdgeLength(float length)
  929. {
  930. mTesselationLength = length;
  931. mCharManager->setTessellation(mFlags.isSet(PhysicsFlag::CCT_Tesselation), mTesselationLength);
  932. }
  933. UINT32 PhysX::addBroadPhaseRegion(const AABox& region)
  934. {
  935. UINT32 id = mNextRegionIdx++;
  936. PxBroadPhaseRegion pxRegion;
  937. pxRegion.bounds = PxBounds3(toPxVector(region.getMin()), toPxVector(region.getMax()));
  938. pxRegion.userData = (void*)(UINT64)id;
  939. UINT32 handle = mScene->addBroadPhaseRegion(pxRegion, true);
  940. mBroadPhaseRegionHandles[id] = handle;
  941. return handle;
  942. }
  943. void PhysX::removeBroadPhaseRegion(UINT32 regionId)
  944. {
  945. auto iterFind = mBroadPhaseRegionHandles.find(regionId);
  946. if (iterFind == mBroadPhaseRegionHandles.end())
  947. return;
  948. mScene->removeBroadPhaseRegion(iterFind->second);
  949. mBroadPhaseRegionHandles.erase(iterFind);
  950. }
  951. void PhysX::clearBroadPhaseRegions()
  952. {
  953. for(auto& entry : mBroadPhaseRegionHandles)
  954. mScene->removeBroadPhaseRegion(entry.second);
  955. mBroadPhaseRegionHandles.clear();
  956. }
  957. PhysX& gPhysX()
  958. {
  959. return static_cast<PhysX&>(PhysX::instance());
  960. }
  961. }