| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594 |
- #pragma once
- #include "BsPrerequisitesUtil.h"
- #include "BsDegree.h"
- #include "BsRadian.h"
- namespace BansheeEngine
- {
- /**
- * @brief Utility class providing common scalar math operations.
- */
- class BS_UTILITY_EXPORT Math
- {
- public:
- static Radian acos(float val);
- static Radian asin(float val);
- static Radian atan(float val) { return Radian(std::atan(val)); }
- static Radian atan2(float y, float x) { return Radian(std::atan2(y,x)); }
- static float cos(const Radian& val) { return (float)std::cos(val.valueRadians()); }
- static float cos(float val) { return (float)std::cos(val); }
- static float sin(const Radian& val) { return (float)std::sin(val.valueRadians()); }
- static float sin(float val) { return (float)std::sin(val); }
- static float tan(const Radian& val) { return (float)std::tan(val.valueRadians()); }
- static float tan(float val) { return (float)std::tan(val); }
- static float sqrt(float val) { return (float)std::sqrt(val); }
- static Radian sqrt(const Radian& val) { return Radian(std::sqrt(val.valueRadians())); }
- static Degree sqrt(const Degree& val) { return Degree(std::sqrt(val.valueDegrees())); }
- static float invSqrt(float val);
- static float sqr(float val) { return val*val; }
- static float pow(float base, float exponent) { return (float)std::pow(base, exponent); }
- static float exp(float val) { return (float)std::exp(val); }
- static float log(float val) { return (float)std::log(val); }
- static float log2(float val) { return (float)(std::log(val)/LOG2); }
- static float logN(float base, float val) { return (float)(std::log(val)/std::log(base)); }
- static float sign(float val);
- static Radian sign(const Radian& val) { return Radian(sign(val.valueRadians())); }
- static Degree sign(const Degree& val) { return Degree(sign(val.valueDegrees())); }
- static float abs(float val) { return float(std::fabs(val)); }
- static Degree abs(const Degree& val) { return Degree(std::fabs(val.valueDegrees())); }
- static Radian abs(const Radian& val) { return Radian(std::fabs(val.valueRadians())); }
- static float ceil(float val) { return (float)std::ceil(val); }
- static int ceilToInt(float val) { return (int)std::ceil(val); }
- static float round(float val) { return (float)std::floor(val + 0.5f); }
- static int roundToInt(float val) { return (int)std::floor(val + 0.5f); }
- static float floor(float val) { return (float)std::floor(val); }
- static int floorToInt(float val) { return (int)std::floor(val); }
- /**
- * @brief Clamp a value within an inclusive range.
- */
- template <typename T>
- static T clamp(T val, T minval, T maxval)
- {
- assert (minval <= maxval && "Invalid clamp range");
- return std::max(std::min(val, maxval), minval);
- }
- /**
- * @brief Clamp a value within an inclusive range [0..1].
- */
- template <typename T>
- static T clamp01(T val)
- {
- return std::max(std::min(val, (T)1), (T)0);
- }
- /**
- * @brief Checks is the specified value a power of two. Only works on integer values.
- */
- template <typename T>
- static bool isPow2(T val)
- {
- return (val & (val - 1)) == 0;
- }
- static bool isNaN(float f)
- {
- return f != f;
- }
- /**
- * @brief Compare two floats, using tolerance for inaccuracies.
- */
- static bool approxEquals(float a, float b, float tolerance = std::numeric_limits<float>::epsilon());
- /**
- * @brief Compare two doubles, using tolerance for inaccuracies.
- */
- static bool approxEquals(double a, double b, double tolerance = std::numeric_limits<double>::epsilon());
- /**
- * @brief Compare two 2D vectors, using tolerance for inaccuracies.
- */
- static bool approxEquals(const Vector2& a, const Vector2& b, float tolerance = std::numeric_limits<float>::epsilon());
- /**
- * @brief Compare two 3D vectors, using tolerance for inaccuracies.
- */
- static bool approxEquals(const Vector3& a, const Vector3& b, float tolerance = std::numeric_limits<float>::epsilon());
- /**
- * @brief Compare two 4D vectors, using tolerance for inaccuracies.
- */
- static bool approxEquals(const Vector4& a, const Vector4& b, float tolerance = std::numeric_limits<float>::epsilon());
- /**
- * @brief Calculates the tangent space vector for a given set of positions / texture coords.
- */
- static Vector3 calculateTriTangent(const Vector3& position1, const Vector3& position2,
- const Vector3& position3, float u1, float v1, float u2, float v2, float u3, float v3);
- /************************************************************************/
- /* TRIG APPROXIMATIONS */
- /************************************************************************/
- /**
- * @brief Sine function approximation.
- *
- * @param val Angle in range [0, pi/2].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- */
- static float fastSin0(const Radian& val) { return (float)fastASin0(val.valueRadians()); }
- /**
- * @brief Sine function approximation.
- *
- * @param val Angle in range [0, pi/2].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- */
- static float fastSin0(float val);
- /**
- * @brief Sine function approximation.
- *
- * @param val Angle in range [0, pi/2].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- * Slightly better (and slower) than "fastSin0".
- */
- static float fastSin1(const Radian& val) { return (float)fastASin1(val.valueRadians()); }
- /**
- * @brief Sine function approximation.
- *
- * @param val Angle in range [0, pi/2].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- * Slightly better (and slower) than "fastSin0".
- */
- static float fastSin1(float val);
- /**
- * @brief Cosine function approximation.
- *
- * @param val Angle in range [0, pi/2].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- */
- static float fastCos0(const Radian& val) { return (float)fastACos0(val.valueRadians()); }
- /**
- * @brief Cosine function approximation.
- *
- * @param val Angle in range [0, pi/2].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- */
- static float fastCos0(float val);
- /**
- * @brief Cosine function approximation.
- *
- * @param val Angle in range [0, pi/2].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- * Slightly better (and slower) than "fastCos0".
- */
- static float fastCos1(const Radian& val) { return (float)fastACos1(val.valueRadians()); }
- /**
- * @brief Cosine function approximation.
- *
- * @param val Angle in range [0, pi/2].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- * Slightly better (and slower) than "fastCos0".
- */
- static float fastCos1(float val);
- /**
- * @brief Tangent function approximation.
- *
- * @param val Angle in range [0, pi/4].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- */
- static float fastTan0(const Radian& val) { return (float)fastATan0(val.valueRadians()); }
- /**
- * @brief Tangent function approximation.
- *
- * @param val Angle in range [0, pi/4].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- */
- static float fastTan0(float val);
- /**
- * @brief Tangent function approximation.
- *
- * @param val Angle in range [0, pi/4].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- * Slightly better (and slower) than "fastTan0".
- */
- static float fastTan1(const Radian& val) { return (float)fastATan1(val.valueRadians()); }
- /**
- * @brief Tangent function approximation.
- *
- * @param val Angle in range [0, pi/4].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- * Slightly better (and slower) than "fastTan0".
- */
- static float fastTan1(float val);
- /**
- * @brief Inverse sine function approximation.
- *
- * @param val Angle in range [0, 1].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- */
- static float fastASin0(const Radian& val) { return (float)fastASin0(val.valueRadians()); }
- /**
- * @brief Inverse sine function approximation.
- *
- * @param val Angle in range [0, 1].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- */
- static float fastASin0(float val);
- /**
- * @brief Inverse sine function approximation.
- *
- * @param val Angle in range [0, 1].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- * Slightly better (and slower) than "fastASin0".
- */
- static float fastASin1(const Radian& val) { return (float)fastASin1(val.valueRadians()); }
- /**
- * @brief Inverse sine function approximation.
- *
- * @param val Angle in range [0, 1].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- * Slightly better (and slower) than "fastASin0".
- */
- static float fastASin1(float val);
- /**
- * @brief Inverse cosine function approximation.
- *
- * @param val Angle in range [0, 1].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- */
- static float fastACos0(const Radian& val) { return (float)fastACos0(val.valueRadians()); }
- /**
- * @brief Inverse cosine function approximation.
- *
- * @param val Angle in range [0, 1].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- */
- static float fastACos0(float val);
- /**
- * @brief Inverse cosine function approximation.
- *
- * @param val Angle in range [0, 1].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- * Slightly better (and slower) than "fastACos0".
- */
- static float fastACos1(const Radian& val) { return (float)fastACos1(val.valueRadians()); }
- /**
- * @brief Inverse cosine function approximation.
- *
- * @param val Angle in range [0, 1].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- * Slightly better (and slower) than "fastACos0".
- */
- static float fastACos1(float val);
- /**
- * @brief Inverse tangent function approximation.
- *
- * @param val Angle in range [-1, 1].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- */
- static float fastATan0(const Radian& val) { return (float)fastATan0(val.valueRadians()); }
- /**
- * @brief Inverse tangent function approximation.
- *
- * @param val Angle in range [-1, 1].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- */
- static float fastATan0(float val);
- /**
- * @brief Inverse tangent function approximation.
- *
- * @param val Angle in range [-1, 1].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- * Slightly better (and slower) than "fastATan0".
- */
- static float fastATan1(const Radian& val) { return (float)fastATan1(val.valueRadians()); }
- /**
- * @brief Inverse tangent function approximation.
- *
- * @param val Angle in range [-1, 1].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- * Slightly better (and slower) than "fastATan0".
- */
- static float fastATan1(float val);
- /**
- * @brief Interpolates between min and max. Returned value is in
- * [0, 1] range where min = 0, max = 1 and 0.5 is the average
- * of min and max.
- */
- template <typename T>
- static float lerp01(T val, T min, T max)
- {
- return clamp01((val - min) / std::max(max - min, 0.0001F));
- }
- /**
- * @brief Solves the linear equation with the parameters A, B.
- * Returns number of roots found and the roots themselves will
- * be output in the "roots" array.
- *
- * @param roots Must be at least size of 1.
- *
- * @note Only returns real roots.
- */
- template <typename T>
- static UINT32 solveLinear(T A, T B, T* roots)
- {
- if (!approxEquals(A, (T)0))
- {
- roots[0] = -B / A;
- return 1;
- }
- roots[0] = 0.0f;
- return 1;
- }
- /**
- * @brief Solves the quadratic equation with the parameters A, B, C.
- * Returns number of roots found and the roots themselves will
- * be output in the "roots" array.
- *
- * @param roots Must be at least size of 2.
- *
- * @note Only returns real roots.
- */
- template <typename T>
- static UINT32 solveQuadratic(T A, T B, T C, T* roots)
- {
- if (!approxEquals(A, (T)0))
- {
- T p = B / (2 * A);
- T q = C / A;
- T D = p * p - q;
- if (!approxEquals(D, (T)0))
- {
- if (D < (T)0)
- return 0;
-
- T sqrtD = sqrt(D);
- roots[0] = sqrtD - p;
- roots[1] = -sqrtD - p;
- return 2;
- }
- else
- {
- roots[0] = -p;
- roots[1] = -p;
- return 1;
- }
- }
- else
- {
- return solveLinear(B, C, roots);
- }
- }
- /**
- * @brief Solves the cubic equation with the parameters A, B, C, D.
- * Returns number of roots found and the roots themselves will
- * be output in the "roots" array.
- *
- * @param roots Must be at least size of 3.
- *
- * @note Only returns real roots.
- */
- template <typename T>
- static UINT32 solveCubic(T A, T B, T C, T D, T* roots)
- {
- static const T THIRD = (1 / (T)3);
- T invA = 1 / A;
- A = B * invA;
- B = C * invA;
- C = D * invA;
- T sqA = A * A;
- T p = THIRD * (-THIRD * sqA + B);
- T q = ((T)0.5) * ((2 / (T)27) * A * sqA - THIRD * A * B + C);
- T cbp = p * p * p;
- D = q * q + cbp;
- UINT32 numRoots = 0;
- if (!approxEquals(D, (T)0))
- {
- if (D < 0.0)
- {
- T phi = THIRD * ::acos(-q / sqrt(-cbp));
- T t = 2 * sqrt(-p);
- roots[0] = t * cos(phi);
- roots[1] = -t * cos(phi + PI * THIRD);
- roots[2] = -t * cos(phi - PI * THIRD);
- numRoots = 3;
- }
- else
- {
- T sqrtD = sqrt(D);
- T u = cbrt(sqrtD + fabs(q));
- if (q > (T)0)
- roots[0] = -u + p / u;
- else
- roots[0] = u - p / u;
- numRoots = 1;
- }
- }
- else
- {
- if (!approxEquals(q, (T)0))
- {
- T u = cbrt(-q);
- roots[0] = 2 * u;
- roots[1] = -u;
- numRoots = 2;
- }
- else
- {
- roots[0] = 0.0f;
- numRoots = 1;
- }
- }
- T sub = THIRD * A;
- for (UINT32 i = 0; i < numRoots; i++)
- roots[i] -= sub;
- return numRoots;
- }
- /**
- * @brief Solves the quartic equation with the parameters A, B, C, D, E.
- * Returns number of roots found and the roots themselves will
- * be output in the "roots" array.
- *
- * @param roots Must be at least size of 4.
- *
- * @note Only returns real roots.
- */
- template <typename T>
- static UINT32 solveQuartic(T A, T B, T C, T D, T E, T* roots)
- {
- T invA = 1 / A;
- A = B * invA;
- B = C * invA;
- C = D * invA;
- D = E * invA;
- T sqA = A*A;
- T p = -(3 / (T)8) * sqA + B;
- T q = (1 / (T)8) * sqA * A - (T)0.5 * A * B + C;
- T r = -(3 / (T)256) * sqA * sqA + (1 / (T)16) * sqA * B - (1 / (T)4) * A * C + D;
- UINT32 numRoots = 0;
- if (!approxEquals(r, (T)0))
- {
- T cubicA = 1;
- T cubicB = -(T)0.5 * p ;
- T cubicC = -r;
- T cubicD = (T)0.5 * r * p - (1 / (T)8) * q * q;
- solveCubic(cubicA, cubicB, cubicC, cubicD, roots);
- T z = roots[0];
- T u = z * z - r;
- T v = 2 * z - p;
- if (approxEquals(u, T(0)))
- u = 0;
- else if (u > 0)
- u = sqrt(u);
- else
- return 0;
- if (approxEquals(v, T(0)))
- v = 0;
- else if (v > 0)
- v = sqrt(v);
- else
- return 0;
- T quadraticA = 1;
- T quadraticB = q < 0 ? -v : v;
- T quadraticC = z - u;
- numRoots = solveQuadratic(quadraticA, quadraticB, quadraticC, roots);
- quadraticA = 1;
- quadraticB = q < 0 ? v : -v;
- quadraticC = z + u;
- numRoots += solveQuadratic(quadraticA, quadraticB, quadraticC, roots + numRoots);
- }
- else
- {
- numRoots = solveCubic(q, p, (T)0, (T)1, roots);
- roots[numRoots++] = 0;
- }
- T sub = (1/(T)4) * A;
- for (UINT32 i = 0; i < numRoots; i++)
- roots[i] -= sub;
- return numRoots;
- }
- static const float POS_INFINITY;
- static const float NEG_INFINITY;
- static const float PI;
- static const float TWO_PI;
- static const float HALF_PI;
- static const float DEG2RAD;
- static const float RAD2DEG;
- static const float LOG2;
- };
- }
|