BsMath.h 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594
  1. #pragma once
  2. #include "BsPrerequisitesUtil.h"
  3. #include "BsDegree.h"
  4. #include "BsRadian.h"
  5. namespace BansheeEngine
  6. {
  7. /**
  8. * @brief Utility class providing common scalar math operations.
  9. */
  10. class BS_UTILITY_EXPORT Math
  11. {
  12. public:
  13. static Radian acos(float val);
  14. static Radian asin(float val);
  15. static Radian atan(float val) { return Radian(std::atan(val)); }
  16. static Radian atan2(float y, float x) { return Radian(std::atan2(y,x)); }
  17. static float cos(const Radian& val) { return (float)std::cos(val.valueRadians()); }
  18. static float cos(float val) { return (float)std::cos(val); }
  19. static float sin(const Radian& val) { return (float)std::sin(val.valueRadians()); }
  20. static float sin(float val) { return (float)std::sin(val); }
  21. static float tan(const Radian& val) { return (float)std::tan(val.valueRadians()); }
  22. static float tan(float val) { return (float)std::tan(val); }
  23. static float sqrt(float val) { return (float)std::sqrt(val); }
  24. static Radian sqrt(const Radian& val) { return Radian(std::sqrt(val.valueRadians())); }
  25. static Degree sqrt(const Degree& val) { return Degree(std::sqrt(val.valueDegrees())); }
  26. static float invSqrt(float val);
  27. static float sqr(float val) { return val*val; }
  28. static float pow(float base, float exponent) { return (float)std::pow(base, exponent); }
  29. static float exp(float val) { return (float)std::exp(val); }
  30. static float log(float val) { return (float)std::log(val); }
  31. static float log2(float val) { return (float)(std::log(val)/LOG2); }
  32. static float logN(float base, float val) { return (float)(std::log(val)/std::log(base)); }
  33. static float sign(float val);
  34. static Radian sign(const Radian& val) { return Radian(sign(val.valueRadians())); }
  35. static Degree sign(const Degree& val) { return Degree(sign(val.valueDegrees())); }
  36. static float abs(float val) { return float(std::fabs(val)); }
  37. static Degree abs(const Degree& val) { return Degree(std::fabs(val.valueDegrees())); }
  38. static Radian abs(const Radian& val) { return Radian(std::fabs(val.valueRadians())); }
  39. static float ceil(float val) { return (float)std::ceil(val); }
  40. static int ceilToInt(float val) { return (int)std::ceil(val); }
  41. static float round(float val) { return (float)std::floor(val + 0.5f); }
  42. static int roundToInt(float val) { return (int)std::floor(val + 0.5f); }
  43. static float floor(float val) { return (float)std::floor(val); }
  44. static int floorToInt(float val) { return (int)std::floor(val); }
  45. /**
  46. * @brief Clamp a value within an inclusive range.
  47. */
  48. template <typename T>
  49. static T clamp(T val, T minval, T maxval)
  50. {
  51. assert (minval <= maxval && "Invalid clamp range");
  52. return std::max(std::min(val, maxval), minval);
  53. }
  54. /**
  55. * @brief Clamp a value within an inclusive range [0..1].
  56. */
  57. template <typename T>
  58. static T clamp01(T val)
  59. {
  60. return std::max(std::min(val, (T)1), (T)0);
  61. }
  62. /**
  63. * @brief Checks is the specified value a power of two. Only works on integer values.
  64. */
  65. template <typename T>
  66. static bool isPow2(T val)
  67. {
  68. return (val & (val - 1)) == 0;
  69. }
  70. static bool isNaN(float f)
  71. {
  72. return f != f;
  73. }
  74. /**
  75. * @brief Compare two floats, using tolerance for inaccuracies.
  76. */
  77. static bool approxEquals(float a, float b, float tolerance = std::numeric_limits<float>::epsilon());
  78. /**
  79. * @brief Compare two doubles, using tolerance for inaccuracies.
  80. */
  81. static bool approxEquals(double a, double b, double tolerance = std::numeric_limits<double>::epsilon());
  82. /**
  83. * @brief Compare two 2D vectors, using tolerance for inaccuracies.
  84. */
  85. static bool approxEquals(const Vector2& a, const Vector2& b, float tolerance = std::numeric_limits<float>::epsilon());
  86. /**
  87. * @brief Compare two 3D vectors, using tolerance for inaccuracies.
  88. */
  89. static bool approxEquals(const Vector3& a, const Vector3& b, float tolerance = std::numeric_limits<float>::epsilon());
  90. /**
  91. * @brief Compare two 4D vectors, using tolerance for inaccuracies.
  92. */
  93. static bool approxEquals(const Vector4& a, const Vector4& b, float tolerance = std::numeric_limits<float>::epsilon());
  94. /**
  95. * @brief Calculates the tangent space vector for a given set of positions / texture coords.
  96. */
  97. static Vector3 calculateTriTangent(const Vector3& position1, const Vector3& position2,
  98. const Vector3& position3, float u1, float v1, float u2, float v2, float u3, float v3);
  99. /************************************************************************/
  100. /* TRIG APPROXIMATIONS */
  101. /************************************************************************/
  102. /**
  103. * @brief Sine function approximation.
  104. *
  105. * @param val Angle in range [0, pi/2].
  106. *
  107. * @note Evaluates trigonometric functions using polynomial approximations.
  108. */
  109. static float fastSin0(const Radian& val) { return (float)fastASin0(val.valueRadians()); }
  110. /**
  111. * @brief Sine function approximation.
  112. *
  113. * @param val Angle in range [0, pi/2].
  114. *
  115. * @note Evaluates trigonometric functions using polynomial approximations.
  116. */
  117. static float fastSin0(float val);
  118. /**
  119. * @brief Sine function approximation.
  120. *
  121. * @param val Angle in range [0, pi/2].
  122. *
  123. * @note Evaluates trigonometric functions using polynomial approximations.
  124. * Slightly better (and slower) than "fastSin0".
  125. */
  126. static float fastSin1(const Radian& val) { return (float)fastASin1(val.valueRadians()); }
  127. /**
  128. * @brief Sine function approximation.
  129. *
  130. * @param val Angle in range [0, pi/2].
  131. *
  132. * @note Evaluates trigonometric functions using polynomial approximations.
  133. * Slightly better (and slower) than "fastSin0".
  134. */
  135. static float fastSin1(float val);
  136. /**
  137. * @brief Cosine function approximation.
  138. *
  139. * @param val Angle in range [0, pi/2].
  140. *
  141. * @note Evaluates trigonometric functions using polynomial approximations.
  142. */
  143. static float fastCos0(const Radian& val) { return (float)fastACos0(val.valueRadians()); }
  144. /**
  145. * @brief Cosine function approximation.
  146. *
  147. * @param val Angle in range [0, pi/2].
  148. *
  149. * @note Evaluates trigonometric functions using polynomial approximations.
  150. */
  151. static float fastCos0(float val);
  152. /**
  153. * @brief Cosine function approximation.
  154. *
  155. * @param val Angle in range [0, pi/2].
  156. *
  157. * @note Evaluates trigonometric functions using polynomial approximations.
  158. * Slightly better (and slower) than "fastCos0".
  159. */
  160. static float fastCos1(const Radian& val) { return (float)fastACos1(val.valueRadians()); }
  161. /**
  162. * @brief Cosine function approximation.
  163. *
  164. * @param val Angle in range [0, pi/2].
  165. *
  166. * @note Evaluates trigonometric functions using polynomial approximations.
  167. * Slightly better (and slower) than "fastCos0".
  168. */
  169. static float fastCos1(float val);
  170. /**
  171. * @brief Tangent function approximation.
  172. *
  173. * @param val Angle in range [0, pi/4].
  174. *
  175. * @note Evaluates trigonometric functions using polynomial approximations.
  176. */
  177. static float fastTan0(const Radian& val) { return (float)fastATan0(val.valueRadians()); }
  178. /**
  179. * @brief Tangent function approximation.
  180. *
  181. * @param val Angle in range [0, pi/4].
  182. *
  183. * @note Evaluates trigonometric functions using polynomial approximations.
  184. */
  185. static float fastTan0(float val);
  186. /**
  187. * @brief Tangent function approximation.
  188. *
  189. * @param val Angle in range [0, pi/4].
  190. *
  191. * @note Evaluates trigonometric functions using polynomial approximations.
  192. * Slightly better (and slower) than "fastTan0".
  193. */
  194. static float fastTan1(const Radian& val) { return (float)fastATan1(val.valueRadians()); }
  195. /**
  196. * @brief Tangent function approximation.
  197. *
  198. * @param val Angle in range [0, pi/4].
  199. *
  200. * @note Evaluates trigonometric functions using polynomial approximations.
  201. * Slightly better (and slower) than "fastTan0".
  202. */
  203. static float fastTan1(float val);
  204. /**
  205. * @brief Inverse sine function approximation.
  206. *
  207. * @param val Angle in range [0, 1].
  208. *
  209. * @note Evaluates trigonometric functions using polynomial approximations.
  210. */
  211. static float fastASin0(const Radian& val) { return (float)fastASin0(val.valueRadians()); }
  212. /**
  213. * @brief Inverse sine function approximation.
  214. *
  215. * @param val Angle in range [0, 1].
  216. *
  217. * @note Evaluates trigonometric functions using polynomial approximations.
  218. */
  219. static float fastASin0(float val);
  220. /**
  221. * @brief Inverse sine function approximation.
  222. *
  223. * @param val Angle in range [0, 1].
  224. *
  225. * @note Evaluates trigonometric functions using polynomial approximations.
  226. * Slightly better (and slower) than "fastASin0".
  227. */
  228. static float fastASin1(const Radian& val) { return (float)fastASin1(val.valueRadians()); }
  229. /**
  230. * @brief Inverse sine function approximation.
  231. *
  232. * @param val Angle in range [0, 1].
  233. *
  234. * @note Evaluates trigonometric functions using polynomial approximations.
  235. * Slightly better (and slower) than "fastASin0".
  236. */
  237. static float fastASin1(float val);
  238. /**
  239. * @brief Inverse cosine function approximation.
  240. *
  241. * @param val Angle in range [0, 1].
  242. *
  243. * @note Evaluates trigonometric functions using polynomial approximations.
  244. */
  245. static float fastACos0(const Radian& val) { return (float)fastACos0(val.valueRadians()); }
  246. /**
  247. * @brief Inverse cosine function approximation.
  248. *
  249. * @param val Angle in range [0, 1].
  250. *
  251. * @note Evaluates trigonometric functions using polynomial approximations.
  252. */
  253. static float fastACos0(float val);
  254. /**
  255. * @brief Inverse cosine function approximation.
  256. *
  257. * @param val Angle in range [0, 1].
  258. *
  259. * @note Evaluates trigonometric functions using polynomial approximations.
  260. * Slightly better (and slower) than "fastACos0".
  261. */
  262. static float fastACos1(const Radian& val) { return (float)fastACos1(val.valueRadians()); }
  263. /**
  264. * @brief Inverse cosine function approximation.
  265. *
  266. * @param val Angle in range [0, 1].
  267. *
  268. * @note Evaluates trigonometric functions using polynomial approximations.
  269. * Slightly better (and slower) than "fastACos0".
  270. */
  271. static float fastACos1(float val);
  272. /**
  273. * @brief Inverse tangent function approximation.
  274. *
  275. * @param val Angle in range [-1, 1].
  276. *
  277. * @note Evaluates trigonometric functions using polynomial approximations.
  278. */
  279. static float fastATan0(const Radian& val) { return (float)fastATan0(val.valueRadians()); }
  280. /**
  281. * @brief Inverse tangent function approximation.
  282. *
  283. * @param val Angle in range [-1, 1].
  284. *
  285. * @note Evaluates trigonometric functions using polynomial approximations.
  286. */
  287. static float fastATan0(float val);
  288. /**
  289. * @brief Inverse tangent function approximation.
  290. *
  291. * @param val Angle in range [-1, 1].
  292. *
  293. * @note Evaluates trigonometric functions using polynomial approximations.
  294. * Slightly better (and slower) than "fastATan0".
  295. */
  296. static float fastATan1(const Radian& val) { return (float)fastATan1(val.valueRadians()); }
  297. /**
  298. * @brief Inverse tangent function approximation.
  299. *
  300. * @param val Angle in range [-1, 1].
  301. *
  302. * @note Evaluates trigonometric functions using polynomial approximations.
  303. * Slightly better (and slower) than "fastATan0".
  304. */
  305. static float fastATan1(float val);
  306. /**
  307. * @brief Interpolates between min and max. Returned value is in
  308. * [0, 1] range where min = 0, max = 1 and 0.5 is the average
  309. * of min and max.
  310. */
  311. template <typename T>
  312. static float lerp01(T val, T min, T max)
  313. {
  314. return clamp01((val - min) / std::max(max - min, 0.0001F));
  315. }
  316. /**
  317. * @brief Solves the linear equation with the parameters A, B.
  318. * Returns number of roots found and the roots themselves will
  319. * be output in the "roots" array.
  320. *
  321. * @param roots Must be at least size of 1.
  322. *
  323. * @note Only returns real roots.
  324. */
  325. template <typename T>
  326. static UINT32 solveLinear(T A, T B, T* roots)
  327. {
  328. if (!approxEquals(A, (T)0))
  329. {
  330. roots[0] = -B / A;
  331. return 1;
  332. }
  333. roots[0] = 0.0f;
  334. return 1;
  335. }
  336. /**
  337. * @brief Solves the quadratic equation with the parameters A, B, C.
  338. * Returns number of roots found and the roots themselves will
  339. * be output in the "roots" array.
  340. *
  341. * @param roots Must be at least size of 2.
  342. *
  343. * @note Only returns real roots.
  344. */
  345. template <typename T>
  346. static UINT32 solveQuadratic(T A, T B, T C, T* roots)
  347. {
  348. if (!approxEquals(A, (T)0))
  349. {
  350. T p = B / (2 * A);
  351. T q = C / A;
  352. T D = p * p - q;
  353. if (!approxEquals(D, (T)0))
  354. {
  355. if (D < (T)0)
  356. return 0;
  357. T sqrtD = sqrt(D);
  358. roots[0] = sqrtD - p;
  359. roots[1] = -sqrtD - p;
  360. return 2;
  361. }
  362. else
  363. {
  364. roots[0] = -p;
  365. roots[1] = -p;
  366. return 1;
  367. }
  368. }
  369. else
  370. {
  371. return solveLinear(B, C, roots);
  372. }
  373. }
  374. /**
  375. * @brief Solves the cubic equation with the parameters A, B, C, D.
  376. * Returns number of roots found and the roots themselves will
  377. * be output in the "roots" array.
  378. *
  379. * @param roots Must be at least size of 3.
  380. *
  381. * @note Only returns real roots.
  382. */
  383. template <typename T>
  384. static UINT32 solveCubic(T A, T B, T C, T D, T* roots)
  385. {
  386. static const T THIRD = (1 / (T)3);
  387. T invA = 1 / A;
  388. A = B * invA;
  389. B = C * invA;
  390. C = D * invA;
  391. T sqA = A * A;
  392. T p = THIRD * (-THIRD * sqA + B);
  393. T q = ((T)0.5) * ((2 / (T)27) * A * sqA - THIRD * A * B + C);
  394. T cbp = p * p * p;
  395. D = q * q + cbp;
  396. UINT32 numRoots = 0;
  397. if (!approxEquals(D, (T)0))
  398. {
  399. if (D < 0.0)
  400. {
  401. T phi = THIRD * ::acos(-q / sqrt(-cbp));
  402. T t = 2 * sqrt(-p);
  403. roots[0] = t * cos(phi);
  404. roots[1] = -t * cos(phi + PI * THIRD);
  405. roots[2] = -t * cos(phi - PI * THIRD);
  406. numRoots = 3;
  407. }
  408. else
  409. {
  410. T sqrtD = sqrt(D);
  411. T u = cbrt(sqrtD + fabs(q));
  412. if (q > (T)0)
  413. roots[0] = -u + p / u;
  414. else
  415. roots[0] = u - p / u;
  416. numRoots = 1;
  417. }
  418. }
  419. else
  420. {
  421. if (!approxEquals(q, (T)0))
  422. {
  423. T u = cbrt(-q);
  424. roots[0] = 2 * u;
  425. roots[1] = -u;
  426. numRoots = 2;
  427. }
  428. else
  429. {
  430. roots[0] = 0.0f;
  431. numRoots = 1;
  432. }
  433. }
  434. T sub = THIRD * A;
  435. for (UINT32 i = 0; i < numRoots; i++)
  436. roots[i] -= sub;
  437. return numRoots;
  438. }
  439. /**
  440. * @brief Solves the quartic equation with the parameters A, B, C, D, E.
  441. * Returns number of roots found and the roots themselves will
  442. * be output in the "roots" array.
  443. *
  444. * @param roots Must be at least size of 4.
  445. *
  446. * @note Only returns real roots.
  447. */
  448. template <typename T>
  449. static UINT32 solveQuartic(T A, T B, T C, T D, T E, T* roots)
  450. {
  451. T invA = 1 / A;
  452. A = B * invA;
  453. B = C * invA;
  454. C = D * invA;
  455. D = E * invA;
  456. T sqA = A*A;
  457. T p = -(3 / (T)8) * sqA + B;
  458. T q = (1 / (T)8) * sqA * A - (T)0.5 * A * B + C;
  459. T r = -(3 / (T)256) * sqA * sqA + (1 / (T)16) * sqA * B - (1 / (T)4) * A * C + D;
  460. UINT32 numRoots = 0;
  461. if (!approxEquals(r, (T)0))
  462. {
  463. T cubicA = 1;
  464. T cubicB = -(T)0.5 * p ;
  465. T cubicC = -r;
  466. T cubicD = (T)0.5 * r * p - (1 / (T)8) * q * q;
  467. solveCubic(cubicA, cubicB, cubicC, cubicD, roots);
  468. T z = roots[0];
  469. T u = z * z - r;
  470. T v = 2 * z - p;
  471. if (approxEquals(u, T(0)))
  472. u = 0;
  473. else if (u > 0)
  474. u = sqrt(u);
  475. else
  476. return 0;
  477. if (approxEquals(v, T(0)))
  478. v = 0;
  479. else if (v > 0)
  480. v = sqrt(v);
  481. else
  482. return 0;
  483. T quadraticA = 1;
  484. T quadraticB = q < 0 ? -v : v;
  485. T quadraticC = z - u;
  486. numRoots = solveQuadratic(quadraticA, quadraticB, quadraticC, roots);
  487. quadraticA = 1;
  488. quadraticB = q < 0 ? v : -v;
  489. quadraticC = z + u;
  490. numRoots += solveQuadratic(quadraticA, quadraticB, quadraticC, roots + numRoots);
  491. }
  492. else
  493. {
  494. numRoots = solveCubic(q, p, (T)0, (T)1, roots);
  495. roots[numRoots++] = 0;
  496. }
  497. T sub = (1/(T)4) * A;
  498. for (UINT32 i = 0; i < numRoots; i++)
  499. roots[i] -= sub;
  500. return numRoots;
  501. }
  502. static const float POS_INFINITY;
  503. static const float NEG_INFINITY;
  504. static const float PI;
  505. static const float TWO_PI;
  506. static const float HALF_PI;
  507. static const float DEG2RAD;
  508. static const float RAD2DEG;
  509. static const float LOG2;
  510. };
  511. }