BsMath.cpp 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330
  1. //********************************** Banshee Engine (www.banshee3d.com) **************************************************//
  2. //**************** Copyright (c) 2016 Marko Pintera ([email protected]). All rights reserved. **********************//
  3. #include "Math/BsMath.h"
  4. #include "Math/BsVector2.h"
  5. #include "Math/BsVector3.h"
  6. #include "Math/BsVector4.h"
  7. #include "Math/BsQuaternion.h"
  8. namespace bs
  9. {
  10. const float Math::POS_INFINITY = std::numeric_limits<float>::infinity();
  11. const float Math::NEG_INFINITY = -std::numeric_limits<float>::infinity();
  12. const float Math::PI = (float)4.0f * std::atan(1.0f);
  13. const float Math::TWO_PI = (float)(2.0f * PI);
  14. const float Math::HALF_PI = (float)(0.5f * PI);
  15. const float Math::DEG2RAD = PI / 180.0f;
  16. const float Math::RAD2DEG = 180.0f / PI;
  17. const float Math::LOG2 = std::log(2.0f);
  18. Radian Math::acos(float val)
  19. {
  20. if (-1.0f < val)
  21. {
  22. if (val < 1.0f)
  23. return Radian(std::acos(val));
  24. else
  25. return Radian(0.0f);
  26. }
  27. else
  28. {
  29. return Radian(PI);
  30. }
  31. }
  32. Radian Math::asin(float val)
  33. {
  34. if (-1.0f < val)
  35. {
  36. if (val < 1.0f)
  37. return Radian(std::asin(val));
  38. else
  39. return Radian(HALF_PI);
  40. }
  41. else
  42. {
  43. return Radian(-HALF_PI);
  44. }
  45. }
  46. float Math::sign(float val)
  47. {
  48. if (val > 0.0f)
  49. return 1.0f;
  50. if (val < 0.0f)
  51. return -1.0f;
  52. return 0.0f;
  53. }
  54. float Math::invSqrt(float val)
  55. {
  56. return 1.0f/sqrt(val);
  57. }
  58. float Math::fastSin0(float val)
  59. {
  60. float angleSqr = val*val;
  61. float result = 7.61e-03f;
  62. result *= angleSqr;
  63. result -= 1.6605e-01f;
  64. result *= angleSqr;
  65. result += 1.0f;
  66. result *= val;
  67. return result;
  68. }
  69. float Math::fastSin1(float val)
  70. {
  71. float angleSqr = val*val;
  72. float result = -2.39e-08f;
  73. result *= angleSqr;
  74. result += 2.7526e-06f;
  75. result *= angleSqr;
  76. result -= 1.98409e-04f;
  77. result *= angleSqr;
  78. result += 8.3333315e-03f;
  79. result *= angleSqr;
  80. result -= 1.666666664e-01f;
  81. result *= angleSqr;
  82. result += 1.0f;
  83. result *= val;
  84. return result;
  85. }
  86. float Math::fastCos0(float val)
  87. {
  88. float angleSqr = val*val;
  89. float result = 3.705e-02f;
  90. result *= angleSqr;
  91. result -= 4.967e-01f;
  92. result *= angleSqr;
  93. result += 1.0f;
  94. return result;
  95. }
  96. float Math::fastCos1(float val)
  97. {
  98. float angleSqr = val*val;
  99. float result = -2.605e-07f;
  100. result *= angleSqr;
  101. result += 2.47609e-05f;
  102. result *= angleSqr;
  103. result -= 1.3888397e-03f;
  104. result *= angleSqr;
  105. result += 4.16666418e-02f;
  106. result *= angleSqr;
  107. result -= 4.999999963e-01f;
  108. result *= angleSqr;
  109. result += 1.0f;
  110. return result;
  111. }
  112. float Math::fastTan0(float val)
  113. {
  114. float angleSqr = val*val;
  115. float result = 2.033e-01f;
  116. result *= angleSqr;
  117. result += 3.1755e-01f;
  118. result *= angleSqr;
  119. result += 1.0f;
  120. result *= val;
  121. return result;
  122. }
  123. float Math::fastTan1(float val)
  124. {
  125. float angleSqr = val*val;
  126. float result = 9.5168091e-03f;
  127. result *= angleSqr;
  128. result += 2.900525e-03f;
  129. result *= angleSqr;
  130. result += 2.45650893e-02f;
  131. result *= angleSqr;
  132. result += 5.33740603e-02f;
  133. result *= angleSqr;
  134. result += 1.333923995e-01f;
  135. result *= angleSqr;
  136. result += 3.333314036e-01f;
  137. result *= angleSqr;
  138. result += 1.0f;
  139. result *= val;
  140. return result;
  141. }
  142. float Math::fastASin0(float val)
  143. {
  144. float root = sqrt(abs(1.0f - val));
  145. float result = -0.0187293f;
  146. result *= val;
  147. result += 0.0742610f;
  148. result *= val;
  149. result -= 0.2121144f;
  150. result *= val;
  151. result += 1.5707288f;
  152. result = HALF_PI - root*result;
  153. return result;
  154. }
  155. float Math::fastASin1(float val)
  156. {
  157. float root = sqrt(abs(1.0f - val));
  158. float result = -0.0012624911f;
  159. result *= val;
  160. result += 0.0066700901f;
  161. result *= val;
  162. result -= 0.0170881256f;
  163. result *= val;
  164. result += 0.0308918810f;
  165. result *= val;
  166. result -= 0.0501743046f;
  167. result *= val;
  168. result += 0.0889789874f;
  169. result *= val;
  170. result -= 0.2145988016f;
  171. result *= val;
  172. result += 1.5707963050f;
  173. result = HALF_PI - root*result;
  174. return result;
  175. }
  176. float Math::fastACos0(float val)
  177. {
  178. float root = sqrt(abs(1.0f - val));
  179. float result = -0.0187293f;
  180. result *= val;
  181. result += 0.0742610f;
  182. result *= val;
  183. result -= 0.2121144f;
  184. result *= val;
  185. result += 1.5707288f;
  186. result *= root;
  187. return result;
  188. }
  189. float Math::fastACos1(float val)
  190. {
  191. float root = sqrt(abs(1.0f - val));
  192. float result = -0.0012624911f;
  193. result *= val;
  194. result += 0.0066700901f;
  195. result *= val;
  196. result -= 0.0170881256f;
  197. result *= val;
  198. result += 0.0308918810f;
  199. result *= val;
  200. result -= 0.0501743046f;
  201. result *= val;
  202. result += 0.0889789874f;
  203. result *= val;
  204. result -= 0.2145988016f;
  205. result *= val;
  206. result += 1.5707963050f;
  207. result *= root;
  208. return result;
  209. }
  210. float Math::fastATan0(float val)
  211. {
  212. float valueSqr = val*val;
  213. float result = 0.0208351f;
  214. result *= valueSqr;
  215. result -= 0.085133f;
  216. result *= valueSqr;
  217. result += 0.180141f;
  218. result *= valueSqr;
  219. result -= 0.3302995f;
  220. result *= valueSqr;
  221. result += 0.999866f;
  222. result *= val;
  223. return result;
  224. }
  225. float Math::fastATan1(float val)
  226. {
  227. float valueSqr = val*val;
  228. float result = 0.0028662257f;
  229. result *= valueSqr;
  230. result -= 0.0161657367f;
  231. result *= valueSqr;
  232. result += 0.0429096138f;
  233. result *= valueSqr;
  234. result -= 0.0752896400f;
  235. result *= valueSqr;
  236. result += 0.1065626393f;
  237. result *= valueSqr;
  238. result -= 0.1420889944f;
  239. result *= valueSqr;
  240. result += 0.1999355085f;
  241. result *= valueSqr;
  242. result -= 0.3333314528f;
  243. result *= valueSqr;
  244. result += 1.0f;
  245. result *= val;
  246. return result;
  247. }
  248. inline bool Math::approxEquals(const Vector2& a, const Vector2& b, float tolerance)
  249. {
  250. return fabs(b.x - a.x) <= tolerance && fabs(b.y - a.y) <= tolerance;
  251. }
  252. inline bool Math::approxEquals(const Vector3& a, const Vector3& b, float tolerance)
  253. {
  254. return fabs(b.x - a.x) <= tolerance && fabs(b.y - a.y) <= tolerance && fabs(b.z - a.z) <= tolerance;
  255. }
  256. inline bool Math::approxEquals(const Vector4& a, const Vector4& b, float tolerance)
  257. {
  258. return fabs(b.x - a.x) <= tolerance && fabs(b.y - a.y) <= tolerance && fabs(b.z - a.z) <= tolerance &&
  259. fabs(b.w - a.w) <= tolerance;
  260. }
  261. inline bool Math::approxEquals(const Quaternion& a, const Quaternion& b, float tolerance)
  262. {
  263. return fabs(b.x - a.x) <= tolerance && fabs(b.y - a.y) <= tolerance && fabs(b.z - a.z) <= tolerance &&
  264. fabs(b.w - a.w) <= tolerance;
  265. }
  266. Vector3 Math::calculateTriTangent(const Vector3& position1, const Vector3& position2,
  267. const Vector3& position3, float u1, float v1, float u2, float v2, float u3, float v3)
  268. {
  269. Vector3 side0 = position1 - position2;
  270. Vector3 side1 = position3 - position1;
  271. // Calculate face normal
  272. Vector3 normal = side1.cross(side0);
  273. normal.normalize();
  274. // Now we use a formula to calculate the tangent.
  275. float deltaV0 = v1 - v2;
  276. float deltaV1 = v3 - v1;
  277. Vector3 tangent = deltaV1 * side0 - deltaV0 * side1;
  278. tangent.normalize();
  279. // Calculate binormal
  280. float deltaU0 = u1 - u2;
  281. float deltaU1 = u3 - u1;
  282. Vector3 binormal = deltaU1 * side0 - deltaU0 * side1;
  283. binormal.normalize();
  284. // Now, we take the cross product of the tangents to get a vector which
  285. // should point in the same direction as our normal calculated above.
  286. // If it points in the opposite direction (the dot product between the normals is less than zero),
  287. // then we need to reverse the s and t tangents.
  288. // This is because the triangle has been mirrored when going from tangent space to object space.
  289. // reverse tangents if necessary.
  290. Vector3 tangentCross = tangent.cross(binormal);
  291. if (tangentCross.dot(normal) < 0.0f)
  292. {
  293. tangent = -tangent;
  294. binormal = -binormal;
  295. }
  296. return tangent;
  297. }
  298. }