BsMatrix4.cpp 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354
  1. //********************************** Banshee Engine (www.banshee3d.com) **************************************************//
  2. //**************** Copyright (c) 2016 Marko Pintera ([email protected]). All rights reserved. **********************//
  3. #include "BsMatrix4.h"
  4. #include "BsVector3.h"
  5. #include "BsMatrix3.h"
  6. #include "BsQuaternion.h"
  7. namespace BansheeEngine
  8. {
  9. const Matrix4 Matrix4::ZERO(
  10. 0.0f, 0.0f, 0.0f, 0.0f,
  11. 0.0f, 0.0f, 0.0f, 0.0f,
  12. 0.0f, 0.0f, 0.0f, 0.0f,
  13. 0.0f, 0.0f, 0.0f, 0.0f);
  14. const Matrix4 Matrix4::IDENTITY(
  15. 1.0f, 0.0f, 0.0f, 0.0f,
  16. 0.0f, 1.0f, 0.0f, 0.0f,
  17. 0.0f, 0.0f, 1.0f, 0.0f,
  18. 0.0f, 0.0f, 0.0f, 1.0f);
  19. static float MINOR(const Matrix4& m, const UINT32 r0, const UINT32 r1, const UINT32 r2,
  20. const UINT32 c0, const UINT32 c1, const UINT32 c2)
  21. {
  22. return m[r0][c0] * (m[r1][c1] * m[r2][c2] - m[r2][c1] * m[r1][c2]) -
  23. m[r0][c1] * (m[r1][c0] * m[r2][c2] - m[r2][c0] * m[r1][c2]) +
  24. m[r0][c2] * (m[r1][c0] * m[r2][c1] - m[r2][c0] * m[r1][c1]);
  25. }
  26. Matrix4 Matrix4::adjoint() const
  27. {
  28. return Matrix4( MINOR(*this, 1, 2, 3, 1, 2, 3),
  29. -MINOR(*this, 0, 2, 3, 1, 2, 3),
  30. MINOR(*this, 0, 1, 3, 1, 2, 3),
  31. -MINOR(*this, 0, 1, 2, 1, 2, 3),
  32. -MINOR(*this, 1, 2, 3, 0, 2, 3),
  33. MINOR(*this, 0, 2, 3, 0, 2, 3),
  34. -MINOR(*this, 0, 1, 3, 0, 2, 3),
  35. MINOR(*this, 0, 1, 2, 0, 2, 3),
  36. MINOR(*this, 1, 2, 3, 0, 1, 3),
  37. -MINOR(*this, 0, 2, 3, 0, 1, 3),
  38. MINOR(*this, 0, 1, 3, 0, 1, 3),
  39. -MINOR(*this, 0, 1, 2, 0, 1, 3),
  40. -MINOR(*this, 1, 2, 3, 0, 1, 2),
  41. MINOR(*this, 0, 2, 3, 0, 1, 2),
  42. -MINOR(*this, 0, 1, 3, 0, 1, 2),
  43. MINOR(*this, 0, 1, 2, 0, 1, 2));
  44. }
  45. float Matrix4::determinant() const
  46. {
  47. return m[0][0] * MINOR(*this, 1, 2, 3, 1, 2, 3) -
  48. m[0][1] * MINOR(*this, 1, 2, 3, 0, 2, 3) +
  49. m[0][2] * MINOR(*this, 1, 2, 3, 0, 1, 3) -
  50. m[0][3] * MINOR(*this, 1, 2, 3, 0, 1, 2);
  51. }
  52. float Matrix4::determinant3x3() const
  53. {
  54. float cofactor00 = m[1][1] * m[2][2] - m[1][2] * m[2][1];
  55. float cofactor10 = m[1][2] * m[2][0] - m[1][0] * m[2][2];
  56. float cofactor20 = m[1][0] * m[2][1] - m[1][1] * m[2][0];
  57. float det = m[0][0] * cofactor00 + m[0][1] * cofactor10 + m[0][2] * cofactor20;
  58. return det;
  59. }
  60. Matrix4 Matrix4::inverse() const
  61. {
  62. float m00 = m[0][0], m01 = m[0][1], m02 = m[0][2], m03 = m[0][3];
  63. float m10 = m[1][0], m11 = m[1][1], m12 = m[1][2], m13 = m[1][3];
  64. float m20 = m[2][0], m21 = m[2][1], m22 = m[2][2], m23 = m[2][3];
  65. float m30 = m[3][0], m31 = m[3][1], m32 = m[3][2], m33 = m[3][3];
  66. float v0 = m20 * m31 - m21 * m30;
  67. float v1 = m20 * m32 - m22 * m30;
  68. float v2 = m20 * m33 - m23 * m30;
  69. float v3 = m21 * m32 - m22 * m31;
  70. float v4 = m21 * m33 - m23 * m31;
  71. float v5 = m22 * m33 - m23 * m32;
  72. float t00 = + (v5 * m11 - v4 * m12 + v3 * m13);
  73. float t10 = - (v5 * m10 - v2 * m12 + v1 * m13);
  74. float t20 = + (v4 * m10 - v2 * m11 + v0 * m13);
  75. float t30 = - (v3 * m10 - v1 * m11 + v0 * m12);
  76. float invDet = 1 / (t00 * m00 + t10 * m01 + t20 * m02 + t30 * m03);
  77. float d00 = t00 * invDet;
  78. float d10 = t10 * invDet;
  79. float d20 = t20 * invDet;
  80. float d30 = t30 * invDet;
  81. float d01 = - (v5 * m01 - v4 * m02 + v3 * m03) * invDet;
  82. float d11 = + (v5 * m00 - v2 * m02 + v1 * m03) * invDet;
  83. float d21 = - (v4 * m00 - v2 * m01 + v0 * m03) * invDet;
  84. float d31 = + (v3 * m00 - v1 * m01 + v0 * m02) * invDet;
  85. v0 = m10 * m31 - m11 * m30;
  86. v1 = m10 * m32 - m12 * m30;
  87. v2 = m10 * m33 - m13 * m30;
  88. v3 = m11 * m32 - m12 * m31;
  89. v4 = m11 * m33 - m13 * m31;
  90. v5 = m12 * m33 - m13 * m32;
  91. float d02 = + (v5 * m01 - v4 * m02 + v3 * m03) * invDet;
  92. float d12 = - (v5 * m00 - v2 * m02 + v1 * m03) * invDet;
  93. float d22 = + (v4 * m00 - v2 * m01 + v0 * m03) * invDet;
  94. float d32 = - (v3 * m00 - v1 * m01 + v0 * m02) * invDet;
  95. v0 = m21 * m10 - m20 * m11;
  96. v1 = m22 * m10 - m20 * m12;
  97. v2 = m23 * m10 - m20 * m13;
  98. v3 = m22 * m11 - m21 * m12;
  99. v4 = m23 * m11 - m21 * m13;
  100. v5 = m23 * m12 - m22 * m13;
  101. float d03 = - (v5 * m01 - v4 * m02 + v3 * m03) * invDet;
  102. float d13 = + (v5 * m00 - v2 * m02 + v1 * m03) * invDet;
  103. float d23 = - (v4 * m00 - v2 * m01 + v0 * m03) * invDet;
  104. float d33 = + (v3 * m00 - v1 * m01 + v0 * m02) * invDet;
  105. return Matrix4(
  106. d00, d01, d02, d03,
  107. d10, d11, d12, d13,
  108. d20, d21, d22, d23,
  109. d30, d31, d32, d33);
  110. }
  111. Matrix4 Matrix4::inverseAffine() const
  112. {
  113. BS_ASSERT(isAffine());
  114. float m10 = m[1][0], m11 = m[1][1], m12 = m[1][2];
  115. float m20 = m[2][0], m21 = m[2][1], m22 = m[2][2];
  116. float t00 = m22 * m11 - m21 * m12;
  117. float t10 = m20 * m12 - m22 * m10;
  118. float t20 = m21 * m10 - m20 * m11;
  119. float m00 = m[0][0], m01 = m[0][1], m02 = m[0][2];
  120. float invDet = 1 / (m00 * t00 + m01 * t10 + m02 * t20);
  121. t00 *= invDet; t10 *= invDet; t20 *= invDet;
  122. m00 *= invDet; m01 *= invDet; m02 *= invDet;
  123. float r00 = t00;
  124. float r01 = m02 * m21 - m01 * m22;
  125. float r02 = m01 * m12 - m02 * m11;
  126. float r10 = t10;
  127. float r11 = m00 * m22 - m02 * m20;
  128. float r12 = m02 * m10 - m00 * m12;
  129. float r20 = t20;
  130. float r21 = m01 * m20 - m00 * m21;
  131. float r22 = m00 * m11 - m01 * m10;
  132. float m03 = m[0][3], m13 = m[1][3], m23 = m[2][3];
  133. float r03 = - (r00 * m03 + r01 * m13 + r02 * m23);
  134. float r13 = - (r10 * m03 + r11 * m13 + r12 * m23);
  135. float r23 = - (r20 * m03 + r21 * m13 + r22 * m23);
  136. return Matrix4(
  137. r00, r01, r02, r03,
  138. r10, r11, r12, r13,
  139. r20, r21, r22, r23,
  140. 0, 0, 0, 1);
  141. }
  142. void Matrix4::setTRS(const Vector3& translation, const Quaternion& rotation, const Vector3& scale)
  143. {
  144. Matrix3 rot3x3;
  145. rotation.toRotationMatrix(rot3x3);
  146. m[0][0] = scale.x * rot3x3[0][0]; m[0][1] = scale.y * rot3x3[0][1]; m[0][2] = scale.z * rot3x3[0][2]; m[0][3] = translation.x;
  147. m[1][0] = scale.x * rot3x3[1][0]; m[1][1] = scale.y * rot3x3[1][1]; m[1][2] = scale.z * rot3x3[1][2]; m[1][3] = translation.y;
  148. m[2][0] = scale.x * rot3x3[2][0]; m[2][1] = scale.y * rot3x3[2][1]; m[2][2] = scale.z * rot3x3[2][2]; m[2][3] = translation.z;
  149. // No projection term
  150. m[3][0] = 0; m[3][1] = 0; m[3][2] = 0; m[3][3] = 1;
  151. }
  152. void Matrix4::setInverseTRS(const Vector3& translation, const Quaternion& rotation, const Vector3& scale)
  153. {
  154. // Invert the parameters
  155. Vector3 invTranslate = -translation;
  156. Vector3 invScale(1 / scale.x, 1 / scale.y, 1 / scale.z);
  157. Quaternion invRot = rotation.inverse();
  158. // Because we're inverting, order is translation, rotation, scale
  159. // So make translation relative to scale & rotation
  160. invTranslate = invRot.rotate(invTranslate);
  161. invTranslate *= invScale;
  162. // Next, make a 3x3 rotation matrix
  163. Matrix3 rot3x3;
  164. invRot.toRotationMatrix(rot3x3);
  165. // Set up final matrix with scale, rotation and translation
  166. m[0][0] = invScale.x * rot3x3[0][0]; m[0][1] = invScale.x * rot3x3[0][1]; m[0][2] = invScale.x * rot3x3[0][2]; m[0][3] = invTranslate.x;
  167. m[1][0] = invScale.y * rot3x3[1][0]; m[1][1] = invScale.y * rot3x3[1][1]; m[1][2] = invScale.y * rot3x3[1][2]; m[1][3] = invTranslate.y;
  168. m[2][0] = invScale.z * rot3x3[2][0]; m[2][1] = invScale.z * rot3x3[2][1]; m[2][2] = invScale.z * rot3x3[2][2]; m[2][3] = invTranslate.z;
  169. // No projection term
  170. m[3][0] = 0; m[3][1] = 0; m[3][2] = 0; m[3][3] = 1;
  171. }
  172. void Matrix4::decomposition(Vector3& position, Quaternion& rotation, Vector3& scale) const
  173. {
  174. Matrix3 m3x3;
  175. extract3x3Matrix(m3x3);
  176. Matrix3 matQ;
  177. Vector3 vecU;
  178. m3x3.QDUDecomposition(matQ, scale, vecU);
  179. rotation = Quaternion(matQ);
  180. position = Vector3(m[0][3], m[1][3], m[2][3]);
  181. }
  182. void Matrix4::makeView(const Vector3& position, const Quaternion& orientation, const Matrix4* reflectMatrix)
  183. {
  184. // View matrix is:
  185. //
  186. // [ Lx Uy Dz Tx ]
  187. // [ Lx Uy Dz Ty ]
  188. // [ Lx Uy Dz Tz ]
  189. // [ 0 0 0 1 ]
  190. //
  191. // Where T = -(Transposed(Rot) * Pos)
  192. // This is most efficiently done using 3x3 Matrices
  193. Matrix3 rot;
  194. orientation.toRotationMatrix(rot);
  195. // Make the translation relative to new axes
  196. Matrix3 rotT = rot.transpose();
  197. Vector3 trans = (-rotT).transform(position);
  198. // Make final matrix
  199. *this = Matrix4(rotT);
  200. m[0][3] = trans.x;
  201. m[1][3] = trans.y;
  202. m[2][3] = trans.z;
  203. // Deal with reflections
  204. if (reflectMatrix)
  205. {
  206. *this = (*this) * (*reflectMatrix);
  207. }
  208. }
  209. void Matrix4::makeProjectionOrtho(float left, float right, float top,
  210. float bottom, float near, float far)
  211. {
  212. // Create a matrix that transforms coordinate to normalized device coordinate in range:
  213. // Left -1 - Right 1
  214. // Bottom -1 - Top 1
  215. // Near -1 - Far 1
  216. float deltaX = right - left;
  217. float deltaY = bottom - top;
  218. float deltaZ = far - near;
  219. m[0][0] = 2.0F / deltaX;
  220. m[0][1] = 0.0f;
  221. m[0][2] = 0.0f;
  222. m[0][3] = -(right + left) / deltaX;
  223. m[1][0] = 0.0f;
  224. m[1][1] = -2.0F / deltaY;
  225. m[1][2] = 0.0f;
  226. m[1][3] = (top + bottom) / deltaY;
  227. m[2][0] = 0.0f;
  228. m[2][1] = 0.0f;
  229. m[2][2] = -2.0F / deltaZ;
  230. m[2][3] = -(far + near) / deltaZ;
  231. m[3][0] = 0.0f;
  232. m[3][1] = 0.0f;
  233. m[3][2] = 0.0f;
  234. m[3][3] = 1.0f;
  235. }
  236. Matrix4 Matrix4::translation(const Vector3& translation)
  237. {
  238. Matrix4 mat;
  239. mat[0][0] = 1.0f; mat[0][1] = 0.0f; mat[0][2] = 0.0f; mat[0][3] = translation.x;
  240. mat[1][0] = 0.0f; mat[1][1] = 1.0f; mat[1][2] = 0.0f; mat[1][3] = translation.y;
  241. mat[2][0] = 0.0f; mat[2][1] = 0.0f; mat[2][2] = 1.0f; mat[2][3] = translation.z;
  242. mat[3][0] = 0.0f; mat[3][1] = 0.0f; mat[3][2] = 0.0f; mat[3][3] = 1.0f;
  243. return mat;
  244. }
  245. Matrix4 Matrix4::scaling(const Vector3& scale)
  246. {
  247. Matrix4 mat;
  248. mat[0][0] = scale.x; mat[0][1] = 0.0f; mat[0][2] = 0.0f; mat[0][3] = 0.0f;
  249. mat[1][0] = 0.0f; mat[1][1] = scale.y; mat[1][2] = 0.0f; mat[1][3] = 0.0f;
  250. mat[2][0] = 0.0f; mat[2][1] = 0.0f; mat[2][2] = scale.z; mat[2][3] = 0.0f;
  251. mat[3][0] = 0.0f; mat[3][1] = 0.0f; mat[3][2] = 0.0f; mat[3][3] = 1.0f;
  252. return mat;
  253. }
  254. Matrix4 Matrix4::scaling(float scale)
  255. {
  256. Matrix4 mat;
  257. mat[0][0] = scale; mat[0][1] = 0.0f; mat[0][2] = 0.0f; mat[0][3] = 0.0f;
  258. mat[1][0] = 0.0f; mat[1][1] = scale; mat[1][2] = 0.0f; mat[1][3] = 0.0f;
  259. mat[2][0] = 0.0f; mat[2][1] = 0.0f; mat[2][2] = scale; mat[2][3] = 0.0f;
  260. mat[3][0] = 0.0f; mat[3][1] = 0.0f; mat[3][2] = 0.0f; mat[3][3] = 1.0f;
  261. return mat;
  262. }
  263. Matrix4 Matrix4::rotation(const Quaternion& rotation)
  264. {
  265. Matrix3 mat;
  266. rotation.toRotationMatrix(mat);
  267. return Matrix4(mat);
  268. }
  269. Matrix4 Matrix4::TRS(const Vector3& translation, const Quaternion& rotation, const Vector3& scale)
  270. {
  271. Matrix4 mat;
  272. mat.setTRS(translation, rotation, scale);
  273. return mat;
  274. }
  275. Matrix4 Matrix4::inverseTRS(const Vector3& translation, const Quaternion& rotation, const Vector3& scale)
  276. {
  277. Matrix4 mat;
  278. mat.setInverseTRS(translation, rotation, scale);
  279. return mat;
  280. }
  281. }