BsTaskScheduler.cpp 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192
  1. //********************************** Banshee Engine (www.banshee3d.com) **************************************************//
  2. //**************** Copyright (c) 2016 Marko Pintera ([email protected]). All rights reserved. **********************//
  3. #include "Threading/BsTaskScheduler.h"
  4. #include "Threading/BsThreadPool.h"
  5. namespace bs
  6. {
  7. Task::Task(const PrivatelyConstruct& dummy, const String& name, std::function<void()> taskWorker,
  8. TaskPriority priority, SPtr<Task> dependency)
  9. : mName(name), mPriority(priority), mTaskId(0), mTaskWorker(taskWorker), mTaskDependency(dependency), mState(0)
  10. , mParent(nullptr)
  11. {
  12. }
  13. SPtr<Task> Task::create(const String& name, std::function<void()> taskWorker, TaskPriority priority, SPtr<Task> dependency)
  14. {
  15. return bs_shared_ptr_new<Task>(PrivatelyConstruct(), name, taskWorker, priority, dependency);
  16. }
  17. bool Task::isComplete() const
  18. {
  19. return mState.load() == 2;
  20. }
  21. bool Task::isCanceled() const
  22. {
  23. return mState.load() == 3;
  24. }
  25. void Task::wait()
  26. {
  27. if(mParent != nullptr)
  28. mParent->waitUntilComplete(this);
  29. }
  30. void Task::cancel()
  31. {
  32. mState.store(3);
  33. }
  34. TaskScheduler::TaskScheduler()
  35. :mTaskQueue(&TaskScheduler::taskCompare), mMaxActiveTasks(0), mNextTaskId(0), mShutdown(false)
  36. {
  37. mMaxActiveTasks = BS_THREAD_HARDWARE_CONCURRENCY;
  38. mTaskSchedulerThread = ThreadPool::instance().run("TaskScheduler", std::bind(&TaskScheduler::runMain, this));
  39. }
  40. TaskScheduler::~TaskScheduler()
  41. {
  42. // Wait until all tasks complete
  43. {
  44. Lock activeTaskLock(mReadyMutex);
  45. while (mActiveTasks.size() > 0)
  46. {
  47. SPtr<Task> task = mActiveTasks[0];
  48. activeTaskLock.unlock();
  49. task->wait();
  50. activeTaskLock.lock();
  51. }
  52. }
  53. // Start shutdown of the main queue worker and wait until it exits
  54. {
  55. Lock lock(mReadyMutex);
  56. mShutdown = true;
  57. }
  58. mTaskReadyCond.notify_one();
  59. mTaskSchedulerThread.blockUntilComplete();
  60. }
  61. void TaskScheduler::addTask(const SPtr<Task>& task)
  62. {
  63. Lock lock(mReadyMutex);
  64. assert(task->mState != 1 && "Task is already executing, it cannot be executed again until it finishes.");
  65. task->mParent = this;
  66. task->mTaskId = mNextTaskId++;
  67. task->mState.store(0); // Reset state in case the task is getting re-queued
  68. mTaskQueue.insert(task);
  69. // Wake main scheduler thread
  70. mTaskReadyCond.notify_one();
  71. }
  72. void TaskScheduler::addWorker()
  73. {
  74. Lock lock(mReadyMutex);
  75. mMaxActiveTasks++;
  76. // A spot freed up, queue new tasks on main scheduler thread if they exist
  77. mTaskReadyCond.notify_one();
  78. }
  79. void TaskScheduler::removeWorker()
  80. {
  81. Lock lock(mReadyMutex);
  82. if(mMaxActiveTasks > 0)
  83. mMaxActiveTasks--;
  84. }
  85. void TaskScheduler::runMain()
  86. {
  87. while(true)
  88. {
  89. Lock lock(mReadyMutex);
  90. while((mTaskQueue.size() == 0 || (UINT32)mActiveTasks.size() >= mMaxActiveTasks) && !mShutdown)
  91. mTaskReadyCond.wait(lock);
  92. if(mShutdown)
  93. break;
  94. for(UINT32 i = 0; (i < mTaskQueue.size()) && ((UINT32)mActiveTasks.size() < mMaxActiveTasks); i++)
  95. {
  96. SPtr<Task> curTask = *mTaskQueue.begin();
  97. mTaskQueue.erase(mTaskQueue.begin());
  98. if(curTask->isCanceled())
  99. continue;
  100. if(curTask->mTaskDependency != nullptr && !curTask->mTaskDependency->isComplete())
  101. continue;
  102. curTask->mState.store(1);
  103. mActiveTasks.push_back(curTask);
  104. ThreadPool::instance().run(curTask->mName, std::bind(&TaskScheduler::runTask, this, curTask));
  105. }
  106. }
  107. }
  108. void TaskScheduler::runTask(SPtr<Task> task)
  109. {
  110. task->mTaskWorker();
  111. {
  112. Lock lock(mReadyMutex);
  113. auto findIter = std::find(mActiveTasks.begin(), mActiveTasks.end(), task);
  114. if (findIter != mActiveTasks.end())
  115. mActiveTasks.erase(findIter);
  116. }
  117. {
  118. Lock lock(mCompleteMutex);
  119. task->mState.store(2);
  120. mTaskCompleteCond.notify_all();
  121. }
  122. // Possibly this task was someones dependency, so wake the main scheduler thread
  123. mTaskReadyCond.notify_one();
  124. }
  125. void TaskScheduler::waitUntilComplete(const Task* task)
  126. {
  127. if(task->isCanceled())
  128. return;
  129. {
  130. Lock lock(mCompleteMutex);
  131. while(!task->isComplete())
  132. {
  133. addWorker();
  134. mTaskCompleteCond.wait(lock);
  135. removeWorker();
  136. }
  137. }
  138. }
  139. bool TaskScheduler::taskCompare(const SPtr<Task>& lhs, const SPtr<Task>& rhs)
  140. {
  141. // If one tasks priority is higher, that one goes first
  142. if(lhs->mPriority > rhs->mPriority)
  143. return true;
  144. // Otherwise we go by smaller id, as that task was queued earlier than the other
  145. return lhs->mTaskId < rhs->mTaskId;
  146. }
  147. }