BsCoreObject.h 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294
  1. #pragma once
  2. #include "BsCorePrerequisites.h"
  3. #include "BsCoreObjectCore.h"
  4. #include "BsAsyncOp.h"
  5. namespace BansheeEngine
  6. {
  7. /** @addtogroup CoreThread
  8. * @{
  9. */
  10. /**
  11. * Core objects provides functionality for dealing with objects that need to exist on both simulation and core thread.
  12. * It handles cross-thread initialization, destruction as well as syncing data between the two threads.
  13. *
  14. * It also provides a standardized way to initialize/destroy objects, and a way to specify dependant CoreObject%s. For
  15. * those purposes it might also be used for objects that only exist on the core thread.
  16. *
  17. * @note CoreObjectCore is a counterpart to CoreObject that is used exclusively on the core thread. CoreObject on the
  18. * other hand should be used exclusively on the simulation thread. Types that exist on both threads need to
  19. * implement both of these.
  20. */
  21. class BS_CORE_EXPORT CoreObject
  22. {
  23. protected:
  24. /** Values that represent current state of the core object */
  25. enum Flags
  26. {
  27. CGO_DESTROYED = 0x01, /**< Object has been destroyed and shouldn't be used. */
  28. CGO_INIT_ON_CORE_THREAD = 0x02 /**< Object requires initialization on core thread. */
  29. };
  30. public:
  31. /**
  32. * Frees all the data held by this object.
  33. *
  34. * @note
  35. * If this object require initialization on core thread destruction is not done immediately, and is
  36. * instead just scheduled on the core thread. Otherwise the object is destroyed immediately.
  37. */
  38. virtual void destroy();
  39. /**
  40. * Initializes all the internal resources of this object. Must be called right after construction. Generally you
  41. * should call this from a factory method to avoid the issue where user forgets to call it.
  42. *
  43. * @note
  44. * If this object require initialization on core thread initialization is not done immediately, and is instead just
  45. * scheduled on the core thread. Otherwise the object is initialized immediately.
  46. */
  47. virtual void initialize();
  48. /** Returns true if the object has been destroyed. Destroyed object should not be used. */
  49. bool isDestroyed() const { return (mFlags & CGO_DESTROYED) != 0; }
  50. /**
  51. * Blocks the current thread until the resource is fully initialized.
  52. *
  53. * @note
  54. * If you call this without calling initialize first a deadlock will occur. You should not call this from core thread.
  55. */
  56. void blockUntilCoreInitialized();
  57. /** Returns an unique identifier for this object. */
  58. UINT64 getInternalID() const { return mInternalID; }
  59. /** Returns a shared_ptr version of "this" pointer. */
  60. SPtr<CoreObject> getThisPtr() const { return mThis.lock(); }
  61. /**
  62. * Returns an object that contains a core thread specific implementation of this CoreObject. Null is a valid return
  63. * value in case object requires no core thread implementation.
  64. *
  65. * @note Thread safe to retrieve, but its data is only valid on the core thread.
  66. */
  67. SPtr<CoreObjectCore> getCore() const { return mCoreSpecific; }
  68. /**
  69. * Ensures all dirty syncable data is send to the core thread counterpart of this object (if any).
  70. *
  71. * @note Call this if you have modified the object and need to make sure core thread has an up to date version.
  72. * Normally this is done automatically at the end of a frame.
  73. */
  74. void syncToCore(CoreAccessor& accessor);
  75. /** @cond INTERNAL */
  76. /**
  77. * Sets a shared this pointer to this object. This must be called immediately after construction, but before
  78. * initialize().
  79. *
  80. * @note Internal method.
  81. * @note This should be called by the factory creation methods so user doesn't have to call it manually.
  82. */
  83. void _setThisPtr(std::shared_ptr<CoreObject> ptrThis);
  84. /**
  85. * Schedules the object to be destroyed, and then deleted.
  86. *
  87. * @note Internal method.
  88. */
  89. template<class T, class MemAlloc>
  90. static void _delete(CoreObject* obj)
  91. {
  92. if (!obj->isDestroyed())
  93. obj->destroy();
  94. bs_delete<T, MemAlloc>((T*)obj);
  95. }
  96. /** @endcond */
  97. protected:
  98. /**
  99. * Constructs a new core object.
  100. *
  101. * @param[in] requiresCoreInit (optional) Determines if the CoreObjectCore counterpart of this object
  102. * (if it has any, see createCore()) requires initialization and destruction on the
  103. * core thread.
  104. */
  105. CoreObject(bool requiresCoreInit = true);
  106. virtual ~CoreObject();
  107. /**
  108. * Queues a command to be executed on the core thread, without a return value.
  109. *
  110. * @note
  111. * Requires a shared pointer to the object this function will be executed on, in order to make sure the object is
  112. * not deleted before the command executes. Can be null if the function is static or global.
  113. */
  114. static void queueGpuCommand(const SPtr<CoreObjectCore>& obj, std::function<void()> func);
  115. /**
  116. * Queues a command to be executed on the core thread, with a return value in the form of AsyncOp.
  117. *
  118. * @see AsyncOp
  119. *
  120. * @note
  121. * Requires a shared pointer to the object this function will be executed on, in order to make sure the object is
  122. * not deleted before the command executes. Can be null if the function is static or global.
  123. */
  124. static AsyncOp queueReturnGpuCommand(const SPtr<CoreObjectCore>& obj, std::function<void(AsyncOp&)> func);
  125. bool requiresInitOnCoreThread() const { return (mFlags & CGO_INIT_ON_CORE_THREAD) != 0; }
  126. void setIsDestroyed(bool destroyed) { mFlags = destroyed ? mFlags | CGO_DESTROYED : mFlags & ~CGO_DESTROYED; }
  127. private:
  128. friend class CoreObjectManager;
  129. volatile UINT8 mFlags;
  130. UINT32 mCoreDirtyFlags;
  131. UINT64 mInternalID; // ID == 0 is not a valid ID
  132. std::weak_ptr<CoreObject> mThis;
  133. /**
  134. * Queues object initialization command on the core thread. The command is added to the primary core thread queue
  135. * and will be executed as soon as the core thread is ready.
  136. */
  137. static void queueInitializeGpuCommand(const SPtr<CoreObjectCore>& obj);
  138. /**
  139. * Queues object destruction command on the core thread. The command is added to the core thread accessor of this
  140. * thread and will be executed after accessor commands are submitted and any previously queued commands are executed.
  141. *
  142. * @note It is up to the caller to ensure no other accessors attempt to use this object.
  143. */
  144. static void queueDestroyGpuCommand(const SPtr<CoreObjectCore>& obj);
  145. /** Helper wrapper method used for queuing commands with no return value on the core thread. */
  146. static void executeGpuCommand(const SPtr<CoreObjectCore>& obj, std::function<void()> func);
  147. /** Helper wrapper method used for queuing commands with a return value on the core thread. */
  148. static void executeReturnGpuCommand(const SPtr<CoreObjectCore>& obj, std::function<void(AsyncOp&)> func, AsyncOp& op);
  149. protected:
  150. /************************************************************************/
  151. /* CORE OBJECT SYNC */
  152. /************************************************************************/
  153. /**
  154. * Creates an object that contains core thread specific data and methods for this CoreObject. Can be null if such
  155. * object is not required.
  156. */
  157. virtual SPtr<CoreObjectCore> createCore() const { return nullptr; }
  158. /**
  159. * Marks the core data as dirty. This causes the syncToCore() method to trigger the next time objects are synced
  160. * between core and sim threads.
  161. *
  162. * @param[in] flags (optional) Flags in case you want to signal that only part of the internal data is dirty.
  163. * syncToCore() will be called regardless and it's up to the implementation to read
  164. * the flags value if needed.
  165. */
  166. void markCoreDirty(UINT32 flags = 0xFFFFFFFF);
  167. /** Marks the core data as clean. Normally called right after syncToCore() has been called. */
  168. void markCoreClean() { mCoreDirtyFlags = 0; }
  169. /**
  170. * Notifies the core object manager that this object is dependant on some other CoreObject(s), and the dependencies
  171. * changed since the last call to this method. This will trigger a call to getCoreDependencies() to collect the
  172. * new dependencies.
  173. */
  174. void markDependenciesDirty();
  175. /**
  176. * Checks is the core dirty flag set. This is used by external systems to know when internal data has changed and
  177. * core thread potentially needs to be notified.
  178. */
  179. bool isCoreDirty() const { return mCoreDirtyFlags != 0; }
  180. /**
  181. * Returns the exact value of the internal flag that signals whether an object needs to be synced with the core thread.
  182. */
  183. UINT32 getCoreDirtyFlags() const { return mCoreDirtyFlags; }
  184. /**
  185. * Copy internal dirty data to a memory buffer that will be used for updating core thread version of that data.
  186. *
  187. * @note
  188. * This generally happens at the end of every sim thread frame. Synced data becomes available to the core thread
  189. * the start of the next core thread frame.
  190. */
  191. virtual CoreSyncData syncToCore(FrameAlloc* allocator) { return CoreSyncData(); }
  192. /**
  193. * Populates the provided array with all core objects that this core object depends upon. Dependencies are required
  194. * for syncing to the core thread, so the system can be aware to update the dependant objects if a dependency is
  195. * marked as dirty. (e.g. updating a camera's viewport should also trigger an update on camera so it has
  196. * a chance to potentially update its data).
  197. */
  198. virtual void getCoreDependencies(Vector<CoreObject*>& dependencies) { }
  199. protected:
  200. SPtr<CoreObjectCore> mCoreSpecific;
  201. };
  202. /**
  203. * Creates a new core object using the specified allocators and returns a shared pointer to it.
  204. *
  205. * @note
  206. * All core thread object shared pointers must be created using this method or its overloads and you should not create
  207. * them manually.
  208. */
  209. template<class Type, class MainAlloc, class PtrDataAlloc, class... Args>
  210. std::shared_ptr<Type> bs_core_ptr_new(Args &&...args)
  211. {
  212. return std::shared_ptr<Type>(bs_new<Type, MainAlloc>(std::forward<Args>(args)...),
  213. &CoreObject::_delete<Type, MainAlloc>, StdAlloc<Type, PtrDataAlloc>());
  214. }
  215. /**
  216. * Creates a new core object using the specified allocator and returns a shared pointer to it.
  217. *
  218. * @note
  219. * All core thread object shared pointers must be created using this method or its overloads and you should not create
  220. * them manually.
  221. */
  222. template<class Type, class MainAlloc, class... Args>
  223. std::shared_ptr<Type> bs_core_ptr_new(Args &&...args)
  224. {
  225. return std::shared_ptr<Type>(bs_new<Type, MainAlloc>(std::forward<Args>(args)...),
  226. &CoreObject::_delete<Type, MainAlloc>, StdAlloc<Type, GenAlloc>());
  227. }
  228. /**
  229. * Creates a new core object and returns a shared pointer to it.
  230. *
  231. * @note
  232. * All core thread object shared pointers must be created using this method or its overloads and you should not create
  233. * them manually.
  234. */
  235. template<class Type, class... Args>
  236. std::shared_ptr<Type> bs_core_ptr_new(Args &&...args)
  237. {
  238. return std::shared_ptr<Type>(bs_new<Type, GenAlloc>(std::forward<Args>(args)...),
  239. &CoreObject::_delete<Type, GenAlloc>, StdAlloc<Type, GenAlloc>());
  240. }
  241. /**
  242. * Creates a core object shared pointer using a previously constructed object.
  243. *
  244. * @note
  245. * All core thread object shared pointers must be created using this method or its overloads and you should not create
  246. * them manually.
  247. */
  248. template<class Type, class MainAlloc = GenAlloc, class PtrDataAlloc = GenAlloc>
  249. std::shared_ptr<Type> bs_core_ptr(Type* data)
  250. {
  251. return std::shared_ptr<Type>(data, &CoreObject::_delete<Type, MainAlloc>, StdAlloc<Type, PtrDataAlloc>());
  252. }
  253. /** @} */
  254. }