BsMath.h 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590
  1. #pragma once
  2. #include "BsPrerequisitesUtil.h"
  3. #include "BsDegree.h"
  4. #include "BsRadian.h"
  5. namespace BansheeEngine
  6. {
  7. /** @addtogroup Math
  8. * @{
  9. */
  10. /** Utility class providing common scalar math operations. */
  11. class BS_UTILITY_EXPORT Math
  12. {
  13. public:
  14. static Radian acos(float val);
  15. static Radian asin(float val);
  16. static Radian atan(float val) { return Radian(std::atan(val)); }
  17. static Radian atan2(float y, float x) { return Radian(std::atan2(y,x)); }
  18. static float cos(const Radian& val) { return (float)std::cos(val.valueRadians()); }
  19. static float cos(float val) { return (float)std::cos(val); }
  20. static float sin(const Radian& val) { return (float)std::sin(val.valueRadians()); }
  21. static float sin(float val) { return (float)std::sin(val); }
  22. static float tan(const Radian& val) { return (float)std::tan(val.valueRadians()); }
  23. static float tan(float val) { return (float)std::tan(val); }
  24. static float sqrt(float val) { return (float)std::sqrt(val); }
  25. static Radian sqrt(const Radian& val) { return Radian(std::sqrt(val.valueRadians())); }
  26. static Degree sqrt(const Degree& val) { return Degree(std::sqrt(val.valueDegrees())); }
  27. static float invSqrt(float val);
  28. static float sqr(float val) { return val*val; }
  29. static float pow(float base, float exponent) { return (float)std::pow(base, exponent); }
  30. static float exp(float val) { return (float)std::exp(val); }
  31. static float log(float val) { return (float)std::log(val); }
  32. static float log2(float val) { return (float)(std::log(val)/LOG2); }
  33. static float logN(float base, float val) { return (float)(std::log(val)/std::log(base)); }
  34. static float sign(float val);
  35. static Radian sign(const Radian& val) { return Radian(sign(val.valueRadians())); }
  36. static Degree sign(const Degree& val) { return Degree(sign(val.valueDegrees())); }
  37. static float abs(float val) { return float(std::fabs(val)); }
  38. static Degree abs(const Degree& val) { return Degree(std::fabs(val.valueDegrees())); }
  39. static Radian abs(const Radian& val) { return Radian(std::fabs(val.valueRadians())); }
  40. static float ceil(float val) { return (float)std::ceil(val); }
  41. static int ceilToInt(float val) { return (int)std::ceil(val); }
  42. static float round(float val) { return (float)std::floor(val + 0.5f); }
  43. static int roundToInt(float val) { return (int)std::floor(val + 0.5f); }
  44. static float floor(float val) { return (float)std::floor(val); }
  45. static int floorToInt(float val) { return (int)std::floor(val); }
  46. /** Clamp a value within an inclusive range. */
  47. template <typename T>
  48. static T clamp(T val, T minval, T maxval)
  49. {
  50. assert (minval <= maxval && "Invalid clamp range");
  51. return std::max(std::min(val, maxval), minval);
  52. }
  53. /** Clamp a value within an inclusive range [0..1]. */
  54. template <typename T>
  55. static T clamp01(T val)
  56. {
  57. return std::max(std::min(val, (T)1), (T)0);
  58. }
  59. /** Checks is the specified value a power of two. Only works on integer values. */
  60. template <typename T>
  61. static bool isPow2(T val)
  62. {
  63. return (val & (val - 1)) == 0;
  64. }
  65. static bool isNaN(float f)
  66. {
  67. return f != f;
  68. }
  69. /** Compare two floats, using tolerance for inaccuracies. */
  70. static bool approxEquals(float a, float b,
  71. float tolerance = std::numeric_limits<float>::epsilon())
  72. {
  73. return fabs(b - a) <= tolerance;
  74. }
  75. /** Compare two doubles, using tolerance for inaccuracies. */
  76. static bool approxEquals(double a, double b,
  77. double tolerance = std::numeric_limits<double>::epsilon())
  78. {
  79. return fabs(b - a) <= tolerance;
  80. }
  81. /** Compare two 2D vectors, using tolerance for inaccuracies. */
  82. static bool approxEquals(const Vector2& a, const Vector2& b,
  83. float tolerance = std::numeric_limits<float>::epsilon());
  84. /** Compare two 3D vectors, using tolerance for inaccuracies. */
  85. static bool approxEquals(const Vector3& a, const Vector3& b,
  86. float tolerance = std::numeric_limits<float>::epsilon());
  87. /** Compare two 4D vectors, using tolerance for inaccuracies. */
  88. static bool approxEquals(const Vector4& a, const Vector4& b,
  89. float tolerance = std::numeric_limits<float>::epsilon());
  90. /** Compare two quaternions, using tolerance for inaccuracies. */
  91. static bool approxEquals(const Quaternion& a, const Quaternion& b,
  92. float tolerance = std::numeric_limits<float>::epsilon());
  93. /** Calculates the tangent space vector for a given set of positions / texture coords. */
  94. static Vector3 calculateTriTangent(const Vector3& position1, const Vector3& position2,
  95. const Vector3& position3, float u1, float v1, float u2, float v2, float u3, float v3);
  96. /************************************************************************/
  97. /* TRIG APPROXIMATIONS */
  98. /************************************************************************/
  99. /**
  100. * Sine function approximation.
  101. *
  102. * @param[in] val Angle in range [0, pi/2].
  103. *
  104. * @note Evaluates trigonometric functions using polynomial approximations.
  105. */
  106. static float fastSin0(const Radian& val) { return (float)fastASin0(val.valueRadians()); }
  107. /**
  108. * Sine function approximation.
  109. *
  110. * @param[in] val Angle in range [0, pi/2].
  111. *
  112. * @note Evaluates trigonometric functions using polynomial approximations.
  113. */
  114. static float fastSin0(float val);
  115. /**
  116. * Sine function approximation.
  117. *
  118. * @param[in] val Angle in range [0, pi/2].
  119. *
  120. * @note
  121. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastSin0.
  122. */
  123. static float fastSin1(const Radian& val) { return (float)fastASin1(val.valueRadians()); }
  124. /**
  125. * Sine function approximation.
  126. *
  127. * @param[in] val Angle in range [0, pi/2].
  128. *
  129. * @note
  130. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastSin0.
  131. */
  132. static float fastSin1(float val);
  133. /**
  134. * Cosine function approximation.
  135. *
  136. * @param[in] val Angle in range [0, pi/2].
  137. *
  138. * @note Evaluates trigonometric functions using polynomial approximations.
  139. */
  140. static float fastCos0(const Radian& val) { return (float)fastACos0(val.valueRadians()); }
  141. /**
  142. * Cosine function approximation.
  143. *
  144. * @param[in] val Angle in range [0, pi/2].
  145. *
  146. * @note Evaluates trigonometric functions using polynomial approximations.
  147. */
  148. static float fastCos0(float val);
  149. /**
  150. * Cosine function approximation.
  151. *
  152. * @param[in] val Angle in range [0, pi/2].
  153. *
  154. * @note
  155. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastCos0.
  156. */
  157. static float fastCos1(const Radian& val) { return (float)fastACos1(val.valueRadians()); }
  158. /**
  159. * Cosine function approximation.
  160. *
  161. * @param[in] val Angle in range [0, pi/2].
  162. *
  163. * @note
  164. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastCos0.
  165. */
  166. static float fastCos1(float val);
  167. /**
  168. * Tangent function approximation.
  169. *
  170. * @param[in] val Angle in range [0, pi/4].
  171. *
  172. * @note Evaluates trigonometric functions using polynomial approximations.
  173. */
  174. static float fastTan0(const Radian& val) { return (float)fastATan0(val.valueRadians()); }
  175. /**
  176. * Tangent function approximation.
  177. *
  178. * @param[in] val Angle in range [0, pi/4].
  179. *
  180. * @note Evaluates trigonometric functions using polynomial approximations.
  181. */
  182. static float fastTan0(float val);
  183. /**
  184. * Tangent function approximation.
  185. *
  186. * @param[in] val Angle in range [0, pi/4].
  187. *
  188. * @note
  189. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastTan0.
  190. */
  191. static float fastTan1(const Radian& val) { return (float)fastATan1(val.valueRadians()); }
  192. /**
  193. * Tangent function approximation.
  194. *
  195. * @param[in] val Angle in range [0, pi/4].
  196. *
  197. * @note
  198. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastTan0.
  199. */
  200. static float fastTan1(float val);
  201. /**
  202. * Inverse sine function approximation.
  203. *
  204. * @param[in] val Angle in range [0, 1].
  205. *
  206. * @note Evaluates trigonometric functions using polynomial approximations.
  207. */
  208. static float fastASin0(const Radian& val) { return (float)fastASin0(val.valueRadians()); }
  209. /**
  210. * Inverse sine function approximation.
  211. *
  212. * @param[in] val Angle in range [0, 1].
  213. *
  214. * @note Evaluates trigonometric functions using polynomial approximations.
  215. */
  216. static float fastASin0(float val);
  217. /**
  218. * Inverse sine function approximation.
  219. *
  220. * @param[in] val Angle in range [0, 1].
  221. *
  222. * @note
  223. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastASin0.
  224. */
  225. static float fastASin1(const Radian& val) { return (float)fastASin1(val.valueRadians()); }
  226. /**
  227. * Inverse sine function approximation.
  228. *
  229. * @param[in] val Angle in range [0, 1].
  230. *
  231. * @note
  232. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastASin0.
  233. */
  234. static float fastASin1(float val);
  235. /**
  236. * Inverse cosine function approximation.
  237. *
  238. * @param[in] val Angle in range [0, 1].
  239. *
  240. * @note Evaluates trigonometric functions using polynomial approximations.
  241. */
  242. static float fastACos0(const Radian& val) { return (float)fastACos0(val.valueRadians()); }
  243. /**
  244. * Inverse cosine function approximation.
  245. *
  246. * @param[in] val Angle in range [0, 1].
  247. *
  248. * @note Evaluates trigonometric functions using polynomial approximations.
  249. */
  250. static float fastACos0(float val);
  251. /**
  252. * Inverse cosine function approximation.
  253. *
  254. * @param[in] val Angle in range [0, 1].
  255. *
  256. * @note
  257. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastACos0.
  258. */
  259. static float fastACos1(const Radian& val) { return (float)fastACos1(val.valueRadians()); }
  260. /**
  261. * Inverse cosine function approximation.
  262. *
  263. * @param[in] val Angle in range [0, 1].
  264. *
  265. * @note
  266. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastACos0.
  267. */
  268. static float fastACos1(float val);
  269. /**
  270. * Inverse tangent function approximation.
  271. *
  272. * @param[in] val Angle in range [-1, 1].
  273. *
  274. * @note Evaluates trigonometric functions using polynomial approximations.
  275. */
  276. static float fastATan0(const Radian& val) { return (float)fastATan0(val.valueRadians()); }
  277. /**
  278. * Inverse tangent function approximation.
  279. *
  280. * @param[in] val Angle in range [-1, 1].
  281. *
  282. * @note Evaluates trigonometric functions using polynomial approximations.
  283. */
  284. static float fastATan0(float val);
  285. /**
  286. * Inverse tangent function approximation.
  287. *
  288. * @param[in] val Angle in range [-1, 1].
  289. *
  290. * @note
  291. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastATan0.
  292. */
  293. static float fastATan1(const Radian& val) { return (float)fastATan1(val.valueRadians()); }
  294. /**
  295. * Inverse tangent function approximation.
  296. *
  297. * @param[in] val Angle in range [-1, 1].
  298. *
  299. * @note
  300. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastATan0.
  301. */
  302. static float fastATan1(float val);
  303. /**
  304. * Interpolates between min and max. Returned value is in [0, 1] range where min = 0, max = 1 and 0.5 is
  305. * the average of min and max.
  306. */
  307. template <typename T>
  308. static float lerp01(T val, T min, T max)
  309. {
  310. return clamp01((val - min) / std::max(max - min, 0.0001F));
  311. }
  312. /**
  313. * Solves the linear equation with the parameters A, B. Returns number of roots found and the roots themselves will
  314. * be output in the @p roots array.
  315. *
  316. * @param[out] roots Must be at least size of 1.
  317. *
  318. * @note Only returns real roots.
  319. */
  320. template <typename T>
  321. static UINT32 solveLinear(T A, T B, T* roots)
  322. {
  323. if (!approxEquals(A, (T)0))
  324. {
  325. roots[0] = -B / A;
  326. return 1;
  327. }
  328. roots[0] = 0.0f;
  329. return 1;
  330. }
  331. /**
  332. * Solves the quadratic equation with the parameters A, B, C. Returns number of roots found and the roots themselves
  333. * will be output in the @p roots array.
  334. *
  335. * @param[out] roots Must be at least size of 2.
  336. *
  337. * @note Only returns real roots.
  338. */
  339. template <typename T>
  340. static UINT32 solveQuadratic(T A, T B, T C, T* roots)
  341. {
  342. if (!approxEquals(A, (T)0))
  343. {
  344. T p = B / (2 * A);
  345. T q = C / A;
  346. T D = p * p - q;
  347. if (!approxEquals(D, (T)0))
  348. {
  349. if (D < (T)0)
  350. return 0;
  351. T sqrtD = sqrt(D);
  352. roots[0] = sqrtD - p;
  353. roots[1] = -sqrtD - p;
  354. return 2;
  355. }
  356. else
  357. {
  358. roots[0] = -p;
  359. roots[1] = -p;
  360. return 1;
  361. }
  362. }
  363. else
  364. {
  365. return solveLinear(B, C, roots);
  366. }
  367. }
  368. /**
  369. * Solves the cubic equation with the parameters A, B, C, D. Returns number of roots found and the roots themselves
  370. * will be output in the @p roots array.
  371. *
  372. * @param[out] roots Must be at least size of 3.
  373. *
  374. * @note Only returns real roots.
  375. */
  376. template <typename T>
  377. static UINT32 solveCubic(T A, T B, T C, T D, T* roots)
  378. {
  379. static const T THIRD = (1 / (T)3);
  380. T invA = 1 / A;
  381. A = B * invA;
  382. B = C * invA;
  383. C = D * invA;
  384. T sqA = A * A;
  385. T p = THIRD * (-THIRD * sqA + B);
  386. T q = ((T)0.5) * ((2 / (T)27) * A * sqA - THIRD * A * B + C);
  387. T cbp = p * p * p;
  388. D = q * q + cbp;
  389. UINT32 numRoots = 0;
  390. if (!approxEquals(D, (T)0))
  391. {
  392. if (D < 0.0)
  393. {
  394. T phi = THIRD * ::acos(-q / sqrt(-cbp));
  395. T t = 2 * sqrt(-p);
  396. roots[0] = t * cos(phi);
  397. roots[1] = -t * cos(phi + PI * THIRD);
  398. roots[2] = -t * cos(phi - PI * THIRD);
  399. numRoots = 3;
  400. }
  401. else
  402. {
  403. T sqrtD = sqrt(D);
  404. T u = cbrt(sqrtD + fabs(q));
  405. if (q > (T)0)
  406. roots[0] = -u + p / u;
  407. else
  408. roots[0] = u - p / u;
  409. numRoots = 1;
  410. }
  411. }
  412. else
  413. {
  414. if (!approxEquals(q, (T)0))
  415. {
  416. T u = cbrt(-q);
  417. roots[0] = 2 * u;
  418. roots[1] = -u;
  419. numRoots = 2;
  420. }
  421. else
  422. {
  423. roots[0] = 0.0f;
  424. numRoots = 1;
  425. }
  426. }
  427. T sub = THIRD * A;
  428. for (UINT32 i = 0; i < numRoots; i++)
  429. roots[i] -= sub;
  430. return numRoots;
  431. }
  432. /**
  433. * Solves the quartic equation with the parameters A, B, C, D, E. Returns number of roots found and the roots
  434. * themselves will be output in the @p roots array.
  435. *
  436. * @param[out] roots Must be at least size of 4.
  437. *
  438. * @note Only returns real roots.
  439. */
  440. template <typename T>
  441. static UINT32 solveQuartic(T A, T B, T C, T D, T E, T* roots)
  442. {
  443. T invA = 1 / A;
  444. A = B * invA;
  445. B = C * invA;
  446. C = D * invA;
  447. D = E * invA;
  448. T sqA = A*A;
  449. T p = -(3 / (T)8) * sqA + B;
  450. T q = (1 / (T)8) * sqA * A - (T)0.5 * A * B + C;
  451. T r = -(3 / (T)256) * sqA * sqA + (1 / (T)16) * sqA * B - (1 / (T)4) * A * C + D;
  452. UINT32 numRoots = 0;
  453. if (!approxEquals(r, (T)0))
  454. {
  455. T cubicA = 1;
  456. T cubicB = -(T)0.5 * p ;
  457. T cubicC = -r;
  458. T cubicD = (T)0.5 * r * p - (1 / (T)8) * q * q;
  459. solveCubic(cubicA, cubicB, cubicC, cubicD, roots);
  460. T z = roots[0];
  461. T u = z * z - r;
  462. T v = 2 * z - p;
  463. if (approxEquals(u, T(0)))
  464. u = 0;
  465. else if (u > 0)
  466. u = sqrt(u);
  467. else
  468. return 0;
  469. if (approxEquals(v, T(0)))
  470. v = 0;
  471. else if (v > 0)
  472. v = sqrt(v);
  473. else
  474. return 0;
  475. T quadraticA = 1;
  476. T quadraticB = q < 0 ? -v : v;
  477. T quadraticC = z - u;
  478. numRoots = solveQuadratic(quadraticA, quadraticB, quadraticC, roots);
  479. quadraticA = 1;
  480. quadraticB = q < 0 ? v : -v;
  481. quadraticC = z + u;
  482. numRoots += solveQuadratic(quadraticA, quadraticB, quadraticC, roots + numRoots);
  483. }
  484. else
  485. {
  486. numRoots = solveCubic(q, p, (T)0, (T)1, roots);
  487. roots[numRoots++] = 0;
  488. }
  489. T sub = (1/(T)4) * A;
  490. for (UINT32 i = 0; i < numRoots; i++)
  491. roots[i] -= sub;
  492. return numRoots;
  493. }
  494. static const float POS_INFINITY;
  495. static const float NEG_INFINITY;
  496. static const float PI;
  497. static const float TWO_PI;
  498. static const float HALF_PI;
  499. static const float DEG2RAD;
  500. static const float RAD2DEG;
  501. static const float LOG2;
  502. };
  503. /** @} */
  504. }