BsMath.cpp 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328
  1. #include "BsMath.h"
  2. #include "BsVector2.h"
  3. #include "BsVector3.h"
  4. #include "BsVector4.h"
  5. #include "BsQuaternion.h"
  6. namespace BansheeEngine
  7. {
  8. const float Math::POS_INFINITY = std::numeric_limits<float>::infinity();
  9. const float Math::NEG_INFINITY = -std::numeric_limits<float>::infinity();
  10. const float Math::PI = (float)4.0f * std::atan(1.0f);
  11. const float Math::TWO_PI = (float)(2.0f * PI);
  12. const float Math::HALF_PI = (float)(0.5f * PI);
  13. const float Math::DEG2RAD = PI / 180.0f;
  14. const float Math::RAD2DEG = 180.0f / PI;
  15. const float Math::LOG2 = std::log(2.0f);
  16. Radian Math::acos(float val)
  17. {
  18. if (-1.0f < val)
  19. {
  20. if (val < 1.0f)
  21. return Radian(std::acos(val));
  22. else
  23. return Radian(0.0f);
  24. }
  25. else
  26. {
  27. return Radian(PI);
  28. }
  29. }
  30. Radian Math::asin(float val)
  31. {
  32. if (-1.0f < val)
  33. {
  34. if (val < 1.0f)
  35. return Radian(std::asin(val));
  36. else
  37. return Radian(HALF_PI);
  38. }
  39. else
  40. {
  41. return Radian(-HALF_PI);
  42. }
  43. }
  44. float Math::sign(float val)
  45. {
  46. if (val > 0.0f)
  47. return 1.0f;
  48. if (val < 0.0f)
  49. return -1.0f;
  50. return 0.0f;
  51. }
  52. float Math::invSqrt(float val)
  53. {
  54. return 1.0f/sqrt(val);
  55. }
  56. float Math::fastSin0(float val)
  57. {
  58. float angleSqr = val*val;
  59. float result = 7.61e-03f;
  60. result *= angleSqr;
  61. result -= 1.6605e-01f;
  62. result *= angleSqr;
  63. result += 1.0f;
  64. result *= val;
  65. return result;
  66. }
  67. float Math::fastSin1(float val)
  68. {
  69. float angleSqr = val*val;
  70. float result = -2.39e-08f;
  71. result *= angleSqr;
  72. result += 2.7526e-06f;
  73. result *= angleSqr;
  74. result -= 1.98409e-04f;
  75. result *= angleSqr;
  76. result += 8.3333315e-03f;
  77. result *= angleSqr;
  78. result -= 1.666666664e-01f;
  79. result *= angleSqr;
  80. result += 1.0f;
  81. result *= val;
  82. return result;
  83. }
  84. float Math::fastCos0(float val)
  85. {
  86. float angleSqr = val*val;
  87. float result = 3.705e-02f;
  88. result *= angleSqr;
  89. result -= 4.967e-01f;
  90. result *= angleSqr;
  91. result += 1.0f;
  92. return result;
  93. }
  94. float Math::fastCos1(float val)
  95. {
  96. float angleSqr = val*val;
  97. float result = -2.605e-07f;
  98. result *= angleSqr;
  99. result += 2.47609e-05f;
  100. result *= angleSqr;
  101. result -= 1.3888397e-03f;
  102. result *= angleSqr;
  103. result += 4.16666418e-02f;
  104. result *= angleSqr;
  105. result -= 4.999999963e-01f;
  106. result *= angleSqr;
  107. result += 1.0f;
  108. return result;
  109. }
  110. float Math::fastTan0(float val)
  111. {
  112. float angleSqr = val*val;
  113. float result = 2.033e-01f;
  114. result *= angleSqr;
  115. result += 3.1755e-01f;
  116. result *= angleSqr;
  117. result += 1.0f;
  118. result *= val;
  119. return result;
  120. }
  121. float Math::fastTan1(float val)
  122. {
  123. float angleSqr = val*val;
  124. float result = 9.5168091e-03f;
  125. result *= angleSqr;
  126. result += 2.900525e-03f;
  127. result *= angleSqr;
  128. result += 2.45650893e-02f;
  129. result *= angleSqr;
  130. result += 5.33740603e-02f;
  131. result *= angleSqr;
  132. result += 1.333923995e-01f;
  133. result *= angleSqr;
  134. result += 3.333314036e-01f;
  135. result *= angleSqr;
  136. result += 1.0f;
  137. result *= val;
  138. return result;
  139. }
  140. float Math::fastASin0(float val)
  141. {
  142. float root = sqrt(abs(1.0f - val));
  143. float result = -0.0187293f;
  144. result *= val;
  145. result += 0.0742610f;
  146. result *= val;
  147. result -= 0.2121144f;
  148. result *= val;
  149. result += 1.5707288f;
  150. result = HALF_PI - root*result;
  151. return result;
  152. }
  153. float Math::fastASin1(float val)
  154. {
  155. float root = sqrt(abs(1.0f - val));
  156. float result = -0.0012624911f;
  157. result *= val;
  158. result += 0.0066700901f;
  159. result *= val;
  160. result -= 0.0170881256f;
  161. result *= val;
  162. result += 0.0308918810f;
  163. result *= val;
  164. result -= 0.0501743046f;
  165. result *= val;
  166. result += 0.0889789874f;
  167. result *= val;
  168. result -= 0.2145988016f;
  169. result *= val;
  170. result += 1.5707963050f;
  171. result = HALF_PI - root*result;
  172. return result;
  173. }
  174. float Math::fastACos0(float val)
  175. {
  176. float root = sqrt(abs(1.0f - val));
  177. float result = -0.0187293f;
  178. result *= val;
  179. result += 0.0742610f;
  180. result *= val;
  181. result -= 0.2121144f;
  182. result *= val;
  183. result += 1.5707288f;
  184. result *= root;
  185. return result;
  186. }
  187. float Math::fastACos1(float val)
  188. {
  189. float root = sqrt(abs(1.0f - val));
  190. float result = -0.0012624911f;
  191. result *= val;
  192. result += 0.0066700901f;
  193. result *= val;
  194. result -= 0.0170881256f;
  195. result *= val;
  196. result += 0.0308918810f;
  197. result *= val;
  198. result -= 0.0501743046f;
  199. result *= val;
  200. result += 0.0889789874f;
  201. result *= val;
  202. result -= 0.2145988016f;
  203. result *= val;
  204. result += 1.5707963050f;
  205. result *= root;
  206. return result;
  207. }
  208. float Math::fastATan0(float val)
  209. {
  210. float valueSqr = val*val;
  211. float result = 0.0208351f;
  212. result *= valueSqr;
  213. result -= 0.085133f;
  214. result *= valueSqr;
  215. result += 0.180141f;
  216. result *= valueSqr;
  217. result -= 0.3302995f;
  218. result *= valueSqr;
  219. result += 0.999866f;
  220. result *= val;
  221. return result;
  222. }
  223. float Math::fastATan1(float val)
  224. {
  225. float valueSqr = val*val;
  226. float result = 0.0028662257f;
  227. result *= valueSqr;
  228. result -= 0.0161657367f;
  229. result *= valueSqr;
  230. result += 0.0429096138f;
  231. result *= valueSqr;
  232. result -= 0.0752896400f;
  233. result *= valueSqr;
  234. result += 0.1065626393f;
  235. result *= valueSqr;
  236. result -= 0.1420889944f;
  237. result *= valueSqr;
  238. result += 0.1999355085f;
  239. result *= valueSqr;
  240. result -= 0.3333314528f;
  241. result *= valueSqr;
  242. result += 1.0f;
  243. result *= val;
  244. return result;
  245. }
  246. inline bool Math::approxEquals(const Vector2& a, const Vector2& b, float tolerance)
  247. {
  248. return fabs(b.x - a.x) <= tolerance && fabs(b.y - a.y) <= tolerance;
  249. }
  250. inline bool Math::approxEquals(const Vector3& a, const Vector3& b, float tolerance)
  251. {
  252. return fabs(b.x - a.x) <= tolerance && fabs(b.y - a.y) <= tolerance && fabs(b.z - a.z) <= tolerance;
  253. }
  254. inline bool Math::approxEquals(const Vector4& a, const Vector4& b, float tolerance)
  255. {
  256. return fabs(b.x - a.x) <= tolerance && fabs(b.y - a.y) <= tolerance && fabs(b.z - a.z) <= tolerance &&
  257. fabs(b.w - a.w) <= tolerance;
  258. }
  259. inline bool Math::approxEquals(const Quaternion& a, const Quaternion& b, float tolerance)
  260. {
  261. return fabs(b.x - a.x) <= tolerance && fabs(b.y - a.y) <= tolerance && fabs(b.z - a.z) <= tolerance &&
  262. fabs(b.w - a.w) <= tolerance;
  263. }
  264. Vector3 Math::calculateTriTangent(const Vector3& position1, const Vector3& position2,
  265. const Vector3& position3, float u1, float v1, float u2, float v2, float u3, float v3)
  266. {
  267. Vector3 side0 = position1 - position2;
  268. Vector3 side1 = position3 - position1;
  269. // Calculate face normal
  270. Vector3 normal = side1.cross(side0);
  271. normal.normalize();
  272. // Now we use a formula to calculate the tangent.
  273. float deltaV0 = v1 - v2;
  274. float deltaV1 = v3 - v1;
  275. Vector3 tangent = deltaV1 * side0 - deltaV0 * side1;
  276. tangent.normalize();
  277. // Calculate binormal
  278. float deltaU0 = u1 - u2;
  279. float deltaU1 = u3 - u1;
  280. Vector3 binormal = deltaU1 * side0 - deltaU0 * side1;
  281. binormal.normalize();
  282. // Now, we take the cross product of the tangents to get a vector which
  283. // should point in the same direction as our normal calculated above.
  284. // If it points in the opposite direction (the dot product between the normals is less than zero),
  285. // then we need to reverse the s and t tangents.
  286. // This is because the triangle has been mirrored when going from tangent space to object space.
  287. // reverse tangents if necessary.
  288. Vector3 tangentCross = tangent.cross(binormal);
  289. if (tangentCross.dot(normal) < 0.0f)
  290. {
  291. tangent = -tangent;
  292. binormal = -binormal;
  293. }
  294. return tangent;
  295. }
  296. }