Main.cpp 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504
  1. #include <windows.h>
  2. #include "BsApplication.h"
  3. #include "BsImporter.h"
  4. #include "BsTextureImportOptions.h"
  5. #include "BsMaterial.h"
  6. #include "BsShader.h"
  7. #include "BsVirtualInput.h"
  8. #include "BsCCamera.h"
  9. #include "BsCRenderable.h"
  10. #include "BsCGUIWidget.h"
  11. #include "BsGUILayoutX.h"
  12. #include "BsGUILayoutY.h"
  13. #include "BsGUISpace.h"
  14. #include "BsGUILabel.h"
  15. #include "BsGUIButton.h"
  16. #include "BsGUIPanel.h"
  17. #include "BsRenderAPI.h"
  18. #include "BsGUIListBox.h"
  19. #include "BsBuiltinResources.h"
  20. #include "BsRTTIType.h"
  21. #include "BsHString.h"
  22. #include "BsRenderWindow.h"
  23. #include "BsSceneObject.h"
  24. #include "BsCoreThread.h"
  25. #include "BsProfilerOverlay.h"
  26. #include "CameraFlyer.h"
  27. namespace BansheeEngine
  28. {
  29. UINT32 windowResWidth = 1280;
  30. UINT32 windowResHeight = 720;
  31. /**
  32. * Imports all of our assets and prepares GameObject that handle the example logic.
  33. */
  34. void setUpExample();
  35. /**
  36. * Import mesh/texture/GPU programs used by the example.
  37. */
  38. void importAssets(HMesh& model, HTexture& texture, HShader& shader);
  39. /**
  40. * Create a material used by our example model.
  41. */
  42. HMaterial createMaterial(const HTexture& texture, const HShader& shader);
  43. /**
  44. * Set up example scene objects.
  45. */
  46. void setUp3DScene(const HMesh& mesh, const HMaterial& material);
  47. /**
  48. * Set up example GUI.
  49. */
  50. void setUpGUI();
  51. /**
  52. * Set up input configuration and callbacks.
  53. */
  54. void setUpInput();
  55. /**
  56. * Toggles the primary window between full-screen and windowed mode.
  57. */
  58. void toggleFullscreen();
  59. /**
  60. * Called whenever the main render window is resized.
  61. */
  62. void renderWindowResized();
  63. /**
  64. * Called when the selected video mode changes in the video mode list box.
  65. */
  66. void videoModeChanged(UINT32 idx, bool enabled);
  67. /**
  68. * Triggered whenever a virtual button is released.
  69. */
  70. void buttonUp(const VirtualButton& button, UINT32 deviceIdx);
  71. }
  72. using namespace BansheeEngine;
  73. /**
  74. * Main entry point into the application.
  75. */
  76. int CALLBACK WinMain(
  77. _In_ HINSTANCE hInstance,
  78. _In_ HINSTANCE hPrevInstance,
  79. _In_ LPSTR lpCmdLine,
  80. _In_ int nCmdShow
  81. )
  82. {
  83. // Descriptor used for initializing the primary application window.
  84. RENDER_WINDOW_DESC renderWindowDesc;
  85. renderWindowDesc.videoMode = VideoMode(windowResWidth, windowResHeight);
  86. renderWindowDesc.title = "Banshee Example App";
  87. renderWindowDesc.fullscreen = false;
  88. // List of importer plugins we plan on using for importing various resources
  89. Vector<String> importers;
  90. importers.push_back("BansheeFreeImgImporter"); // For importing textures
  91. importers.push_back("BansheeFBXImporter"); // For importing meshes
  92. importers.push_back("BansheeFontImporter"); // For importing fonts
  93. importers.push_back("BansheeSL"); // For importing shaders
  94. // Initializes the application with primary window defined as above and DirectX 11 render system.
  95. // You may use other render systems than DirectX 11, however this example for simplicity only uses DirectX 11.
  96. // If you wanted other render systems you would need to create separate shaders for them and import them
  97. // along with (or replace) the DX11 ones.
  98. Application::startUp(renderWindowDesc, RenderAPIPlugin::DX11, RendererPlugin::Default, importers);
  99. // Imports all of ours assets and prepares GameObject that handle the example logic.
  100. setUpExample();
  101. // Runs the main loop that does most of the work. This method will exit when user closes the main
  102. // window or exits in some other way.
  103. Application::instance().runMainLoop();
  104. Application::shutDown();
  105. return 0;
  106. }
  107. namespace BansheeEngine
  108. {
  109. Path dataPath = Paths::getRuntimeDataPath();
  110. Path exampleModelPath = dataPath + "Examples\\Dragon.fbx";
  111. Path exampleTexturePath = dataPath + "Examples\\Dragon.tga";
  112. Path exampleShaderPath = dataPath + "Examples\\Example.bsl";
  113. GUIButton* toggleFullscreenButton = nullptr;
  114. bool fullscreen = false;
  115. const VideoMode* selectedVideoMode = nullptr;
  116. Vector<const VideoMode*> videoModes;
  117. HCamera sceneCamera;
  118. HProfilerOverlay profilerOverlay;
  119. VirtualButton toggleCPUProfilerBtn;
  120. VirtualButton toggleGPUProfilerBtn;
  121. bool cpuProfilerActive = false;
  122. bool gpuProfilerActive = false;
  123. void setUpExample()
  124. {
  125. HMesh exampleModel;
  126. HTexture exampleTexture;
  127. HShader exampleShader;
  128. importAssets(exampleModel, exampleTexture, exampleShader);
  129. HMaterial exampleMaterial = createMaterial(exampleTexture, exampleShader);
  130. setUp3DScene(exampleModel, exampleMaterial);
  131. setUpGUI();
  132. setUpInput();
  133. }
  134. void importAssets(HMesh& model, HTexture& texture, HShader& shader)
  135. {
  136. // Import mesh, texture and shader from the disk. In a normal application you would want to save the imported assets
  137. // so next time the application is ran you can just load them directly. This can be done with Resources::save/load.
  138. // Import an FBX mesh.
  139. model = Importer::instance().import<Mesh>(exampleModelPath);
  140. // When importing you may specify optional import options that control how is the asset imported.
  141. ImportOptionsPtr textureImportOptions = Importer::instance().createImportOptions(exampleTexturePath);
  142. // rtti_is_of_type checks if the import options are of valid type, in case the provided path is pointing to a non-texture resource.
  143. // This is similar to dynamic_cast but uses Banshee internal RTTI system for type checking.
  144. if (rtti_is_of_type<TextureImportOptions>(textureImportOptions))
  145. {
  146. TextureImportOptions* importOptions = static_cast<TextureImportOptions*>(textureImportOptions.get());
  147. // We want maximum number of mipmaps to be generated
  148. importOptions->setGenerateMipmaps(true);
  149. }
  150. // Import texture with specified import options
  151. texture = Importer::instance().import<Texture>(exampleTexturePath, textureImportOptions);
  152. // Import shader
  153. shader = Importer::instance().import<Shader>(exampleShaderPath);
  154. }
  155. HMaterial createMaterial(const HTexture& texture, const HShader& shader)
  156. {
  157. // And finally create a material with the newly created shader
  158. HMaterial exampleMaterial = Material::create(shader);
  159. // And set the texture to be used by the "tex" shader parameter. We leave the "samp"
  160. // parameter at its defaults.
  161. exampleMaterial->setTexture("tex", texture);
  162. return exampleMaterial;
  163. }
  164. void setUp3DScene(const HMesh& mesh, const HMaterial& material)
  165. {
  166. /************************************************************************/
  167. /* SCENE OBJECT */
  168. /************************************************************************/
  169. // Now we create a scene object that has a position, orientation, scale and optionally
  170. // components to govern its logic. In this particular case we are creating a SceneObject
  171. // with a Renderable component which will render a mesh at the position of the scene object
  172. // with the provided material.
  173. // Create new scene object at (0, 0, 0)
  174. HSceneObject dragonSO = SceneObject::create("Dragon");
  175. // Attach the Renderable component and hook up the mesh we imported earlier,
  176. // and the material we created in the previous section.
  177. HRenderable renderable = dragonSO->addComponent<CRenderable>();
  178. renderable->setMesh(mesh);
  179. renderable->setMaterial(material);
  180. /************************************************************************/
  181. /* CAMERA */
  182. /************************************************************************/
  183. // In order something to render on screen we need at least one camera.
  184. // Like before, we create a new scene object at (0, 0, 0).
  185. HSceneObject sceneCameraSO = SceneObject::create("SceneCamera");
  186. // Get the primary render window we need for creating the camera. Additionally
  187. // hook up a callback so we are notified when user resizes the window.
  188. RenderWindowPtr window = gApplication().getPrimaryWindow();
  189. window->onResized.connect(&renderWindowResized);
  190. // Add a Camera component that will output whatever it sees into that window
  191. // (You could also use a render texture or another window you created).
  192. sceneCamera = sceneCameraSO->addComponent<CCamera>(window);
  193. // Set up camera component properties
  194. // Priority determines in what order are cameras rendered in case multiple cameras render to the same render target.
  195. // We raise the priority slightly because later in code we have defined a GUI camera that we want to render second.
  196. sceneCamera->setPriority(1);
  197. // Set closest distance that is visible. Anything below that is clipped.
  198. sceneCamera->setNearClipDistance(5);
  199. // Set aspect ratio depending on the current resolution
  200. sceneCamera->setAspectRatio(windowResWidth / (float)windowResHeight);
  201. // Add a CameraFlyer component that allows us to move the camera. See CameraFlyer for more information.
  202. sceneCameraSO->addComponent<CameraFlyer>();
  203. // Position and orient the camera scene object
  204. sceneCameraSO->setPosition(Vector3(-130.0f, 140.0f, 650.0f));
  205. sceneCameraSO->lookAt(Vector3(0, 0, 0));
  206. }
  207. void setUpInput()
  208. {
  209. // Register input configuration
  210. // Banshee allows you to use VirtualInput system which will map input device buttons
  211. // and axes to arbitrary names, which allows you to change input buttons without affecting
  212. // the code that uses it, since the code is only aware of the virtual names.
  213. // If you want more direct input, see Input class.
  214. auto inputConfig = VirtualInput::instance().getConfiguration();
  215. // Camera controls for buttons (digital 0-1 input, e.g. keyboard or gamepad button)
  216. inputConfig->registerButton("Forward", BC_W);
  217. inputConfig->registerButton("Back", BC_S);
  218. inputConfig->registerButton("Left", BC_A);
  219. inputConfig->registerButton("Right", BC_D);
  220. inputConfig->registerButton("Forward", BC_UP);
  221. inputConfig->registerButton("Back", BC_BACK);
  222. inputConfig->registerButton("Left", BC_LEFT);
  223. inputConfig->registerButton("Right", BC_RIGHT);
  224. inputConfig->registerButton("FastMove", BC_LSHIFT);
  225. inputConfig->registerButton("RotateCam", BC_MOUSE_RIGHT);
  226. // Camera controls for axes (analog input, e.g. mouse or gamepad thumbstick)
  227. // These return values in [-1.0, 1.0] range.
  228. inputConfig->registerAxis("Horizontal", VIRTUAL_AXIS_DESC((UINT32)InputAxis::MouseX));
  229. inputConfig->registerAxis("Vertical", VIRTUAL_AXIS_DESC((UINT32)InputAxis::MouseY));
  230. // Controls that toggle the profiler overlays
  231. inputConfig->registerButton("CPUProfilerOverlay", BC_F1);
  232. inputConfig->registerButton("GPUProfilerOverlay", BC_F2);
  233. // Cache the profiler overlay buttons so when a button is pressed we can quickly
  234. // use these to determine its the one we want
  235. toggleCPUProfilerBtn = VirtualButton("CPUProfilerOverlay");
  236. toggleGPUProfilerBtn = VirtualButton("GPUProfilerOverlay");
  237. // Hook up a callback that gets triggered whenever a virtual button is released
  238. VirtualInput::instance().onButtonUp.connect(&buttonUp);
  239. }
  240. void setUpGUI()
  241. {
  242. // Create a scene object that will contain GUI components
  243. HSceneObject guiSO = SceneObject::create("Example");
  244. // Get the primary render window we need for creating the camera.
  245. RenderWindowPtr window = gApplication().getPrimaryWindow();
  246. // First we want another camera that is responsible for rendering GUI
  247. HCamera guiCamera = guiSO->addComponent<CCamera>(window);
  248. // Notify the renderer that the camera will only be used for overlays (e.g. GUI) so it can optimize its usage
  249. guiCamera->setFlags(CameraFlags::Overlay);
  250. // Set up GUI camera properties.
  251. // We don't care about aspect ratio for GUI camera.
  252. guiCamera->setAspectRatio(1.0f);
  253. // This camera should ignore any Renderable objects in the scene
  254. guiCamera->setLayers(0);
  255. // Don't clear this camera as that would clear anything the main camera has rendered.
  256. guiCamera->getViewport()->setRequiresClear(false, false, false);
  257. // Add a GUIWidget, the top-level GUI component, parent to all GUI elements. GUI widgets
  258. // require you to specify a viewport that they will output rendered GUI elements to.
  259. HGUIWidget gui = guiSO->addComponent<CGUIWidget>(guiCamera);
  260. // Depth allows you to control how is a GUI widget rendered in relation to other widgets
  261. // Lower depth means the widget will be rendered in front of those with higher. In this case we just
  262. // make the depth mid-range as there are no other widgets.
  263. gui->setDepth(128);
  264. // GUI skin defines how are all child elements of the GUI widget renderered. It contains all their styles
  265. // and default layout properties. We use the default skin that comes built into Banshee.
  266. gui->setSkin(BuiltinResources::instance().getGUISkin());
  267. // Get the primary GUI panel that stretches over the entire window and add to it a vertical layout
  268. // that will be using for vertically positioning messages about toggling profiler overlay.
  269. GUILayout* bottomLayout = gui->getPanel()->addNewElement<GUILayoutY>();
  270. // Add a flexible space that fills up any remaining area in the layout, making the two labels above be aligned
  271. // to the bottom of the GUI widget (and the screen).
  272. bottomLayout->addNewElement<GUIFlexibleSpace>();
  273. // Add a couple of labels to the layout with the needed messages. Labels expect a HString object that
  274. // maps into a string table and allows for easily localization.
  275. bottomLayout->addElement(GUILabel::create(HString(L"Press F1 to toggle CPU profiler overlay")));
  276. bottomLayout->addElement(GUILabel::create(HString(L"Press F2 to toggle GPU profiler overlay")));
  277. // Create a GUI panel that is used for displaying resolution and fullscreen options.
  278. GUILayout* rightLayout = gui->getPanel()->addNewElement<GUILayoutX>();
  279. rightLayout->setPosition(30, 30);
  280. // We want all the GUI elements be right aligned, so we add a flexible space first.
  281. rightLayout->addNewElement<GUIFlexibleSpace>();
  282. // And we want the elements to be vertically placed, top to bottom
  283. GUILayout* elemLayout = rightLayout->addNewElement<GUILayoutY>();
  284. // Add a button that will trigger a callback when clicked
  285. toggleFullscreenButton = GUIButton::create(HString(L"Toggle fullscreen"));
  286. toggleFullscreenButton->onClick.connect(&toggleFullscreen);
  287. elemLayout->addElement(toggleFullscreenButton);
  288. // Leave 30 pixels to the right free
  289. rightLayout->addNewElement<GUIFixedSpace>(30);
  290. // Add a profiler overlay object that is responsible for displaying CPU and GPU profiling GUI
  291. profilerOverlay = guiSO->addComponent<ProfilerOverlay>(guiCamera->_getCamera());
  292. // Set up video mode list box
  293. // First get a list of output devices
  294. const VideoModeInfo& videoModeInfo = RenderAPI::getVideoModeInfo();
  295. // Get video mode info for the primary monitor
  296. const VideoOutputInfo& primaryMonitorInfo = videoModeInfo.getOutputInfo(0);
  297. // Make the current desktop mode the default video mode
  298. selectedVideoMode = &primaryMonitorInfo.getDesktopVideoMode();
  299. // Create list box elements for each available video mode
  300. UINT32 numVideoModes = primaryMonitorInfo.getNumVideoModes();
  301. Vector<HString> videoModeLabels(numVideoModes);
  302. UINT32 selectedVideoModeIdx = 0;
  303. for (UINT32 i = 0; i < numVideoModes; i++)
  304. {
  305. const VideoMode& curVideoMode = primaryMonitorInfo.getVideoMode(i);
  306. HString videoModeLabel(L"{0} x {1} at {2}Hz");
  307. videoModeLabel.setParameter(0, toWString(curVideoMode.getWidth()));
  308. videoModeLabel.setParameter(1, toWString(curVideoMode.getHeight()));
  309. videoModeLabel.setParameter(2, toWString(Math::roundToInt(curVideoMode.getRefreshRate())));
  310. videoModeLabels[i] = videoModeLabel;
  311. videoModes.push_back(&curVideoMode);
  312. if (curVideoMode == *selectedVideoMode)
  313. selectedVideoModeIdx = i;
  314. }
  315. // Create the list box
  316. GUIListBox* videoModeListBox = GUIListBox::create(videoModeLabels);
  317. rightLayout->addElement(videoModeListBox);
  318. // Select the default (desktop) video mode
  319. videoModeListBox->selectElement(selectedVideoModeIdx);
  320. // Set up a callback to be notified when video mode changes
  321. videoModeListBox->onSelectionToggled.connect(&videoModeChanged);
  322. }
  323. void toggleFullscreen()
  324. {
  325. RenderWindowPtr window = gApplication().getPrimaryWindow();
  326. // In order to toggle between full-screen and windowed mode we need to use a CoreAccessor.
  327. // Banshee is a multi-threaded engine and when you need to communicate between simulation and
  328. // core thread you will use a CoreAccessor. Calling a core accessor method will essentially
  329. // queue the method to be executed later. Since RenderWindow is a core object you need to use
  330. // CoreAccessor to modify and access it from simulation thread, except where noted otherwise.
  331. // Classes where it is not clear if they are to be used on the core or simulation thread have
  332. // it noted in their documentation. e.g. RenderWindow::setWindowed method is marked as "Core only".
  333. // Additional asserts are normally in place for debug builds which make it harder for you to accidentally
  334. // call something from the wrong thread.
  335. if (fullscreen)
  336. {
  337. window->setWindowed(gCoreAccessor(), windowResWidth, windowResHeight);
  338. }
  339. else
  340. {
  341. window->setFullscreen(gCoreAccessor(), *selectedVideoMode);
  342. }
  343. fullscreen = !fullscreen;
  344. }
  345. void renderWindowResized()
  346. {
  347. RenderWindowPtr window = gApplication().getPrimaryWindow();
  348. const RenderWindowProperties& rwProps = window->getProperties();
  349. if (!fullscreen)
  350. {
  351. windowResWidth = rwProps.getWidth();
  352. windowResHeight = rwProps.getHeight();
  353. }
  354. sceneCamera->setAspectRatio(rwProps.getWidth() / (float)rwProps.getHeight());
  355. }
  356. void videoModeChanged(UINT32 idx, bool enabled)
  357. {
  358. if (!enabled)
  359. return;
  360. selectedVideoMode = videoModes[idx];
  361. if (fullscreen)
  362. {
  363. RenderWindowPtr window = gApplication().getPrimaryWindow();
  364. window->setFullscreen(gCoreAccessor(), *selectedVideoMode);
  365. }
  366. }
  367. void buttonUp(const VirtualButton& button, UINT32 deviceIdx)
  368. {
  369. // Check if the pressed button is one of the either buttons we defined
  370. // in "setUpExample", and toggle profiler overlays accordingly.
  371. // Device index is ignored for now, as it is assumed the user is using a single keyboard,
  372. // but if you wanted support for multiple gamepads you would check deviceIdx.
  373. if (button == toggleCPUProfilerBtn)
  374. {
  375. if (cpuProfilerActive)
  376. {
  377. profilerOverlay->hide();
  378. cpuProfilerActive = false;
  379. }
  380. else
  381. {
  382. profilerOverlay->show(ProfilerOverlayType::CPUSamples);
  383. cpuProfilerActive = true;
  384. gpuProfilerActive = false;
  385. }
  386. }
  387. else if (button == toggleGPUProfilerBtn)
  388. {
  389. if (gpuProfilerActive)
  390. {
  391. profilerOverlay->hide();
  392. gpuProfilerActive = false;
  393. }
  394. else
  395. {
  396. profilerOverlay->show(ProfilerOverlayType::GPUSamples);
  397. gpuProfilerActive = true;
  398. cpuProfilerActive = false;
  399. }
  400. }
  401. }
  402. }