PerCameraData.bslinc 2.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081
  1. mixin PerCameraData
  2. {
  3. code
  4. {
  5. cbuffer PerCamera
  6. {
  7. float3 gViewDir;
  8. float3 gViewOrigin;
  9. float4x4 gMatViewProj;
  10. float4x4 gMatView;
  11. float4x4 gMatProj;
  12. float4x4 gMatInvProj;
  13. float4x4 gMatInvViewProj;
  14. // Special inverse view-projection matrix that had projection entries that affect z and w eliminated.
  15. // Used to transform a vector(clip_x, clip_y, view_z, view_w), where clip_x/clip_y are in clip space,
  16. // and view_z/view_w in view space, into world space
  17. float4x4 gMatScreenToWorld;
  18. // Converts device Z to world Z using this formula: worldZ = (1 / (deviceZ + y)) * x
  19. float2 gDeviceZToWorldZ;
  20. float2 gNDCZToWorldZ;
  21. // x - near plane distance, y - far plane distance
  22. float2 gNearFar;
  23. // xy - Viewport offset in pixels
  24. // zw - Viewport width & height in pixels
  25. int4 gViewportRectangle;
  26. // xy - (Viewport size in pixels / 2) / Target size in pixels
  27. // zw - (Viewport offset in pixels + (Viewport size in pixels / 2) + Optional pixel center offset) / Target size in pixels
  28. float4 gClipToUVScaleOffset;
  29. float gAmbientFactor;
  30. }
  31. /** Converts Z value in range [0,1] into Z value in view space. */
  32. float convertFromDeviceZ(float deviceZ)
  33. {
  34. return (1.0f / (deviceZ + gDeviceZToWorldZ.y)) * gDeviceZToWorldZ.x;
  35. }
  36. /** Converts Z value from view space to NDC space. */
  37. float convertToNDCZ(float viewZ)
  38. {
  39. return -gNDCZToWorldZ.y + (gNDCZToWorldZ.x / viewZ);
  40. }
  41. /** Converts position in NDC to UV coordinates mapped to the screen rectangle. */
  42. float2 NDCToUV(float2 ndcPos)
  43. {
  44. return ndcPos.xy * gClipToUVScaleOffset.xy + gClipToUVScaleOffset.zw;
  45. }
  46. /** Converts position in UV coordinates mapped to the screen, to screen coordinates in pixels. */
  47. uint2 UVToScreen(float2 uv)
  48. {
  49. return (uint2)(uv * (float2)gViewportRectangle.zw - ((float2)gViewportRectangle.xy + 0.5f));
  50. }
  51. /** Converts position in NDC to screen coordinates in pixels. */
  52. uint2 NDCToScreen(float2 ndcPos)
  53. {
  54. float2 uv = NDCToUV(ndcPos);
  55. return UVToScreen(uv);
  56. }
  57. /** Converts position in NDC to world space. */
  58. float3 NDCToWorld(float2 ndcPos, float depth)
  59. {
  60. // x, y are now in clip space, z, w are in view space
  61. // We multiply them by a special inverse view-projection matrix, that had the projection entries that effect
  62. // z, w eliminated (since they are already in view space)
  63. // Note: Multiply by depth should be avoided if using ortographic projection
  64. float4 mixedSpacePos = float4(ndcPos.xy * -depth, depth, 1);
  65. float4 worldPosition4D = mul(gMatScreenToWorld, mixedSpacePos);
  66. return worldPosition4D.xyz / worldPosition4D.w;
  67. }
  68. };
  69. };