BsRenderBeast.cpp 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029
  1. #include "BsRenderBeast.h"
  2. #include "BsCCamera.h"
  3. #include "BsCRenderable.h"
  4. #include "BsMaterial.h"
  5. #include "BsMesh.h"
  6. #include "BsPass.h"
  7. #include "BsBlendState.h"
  8. #include "BsRasterizerState.h"
  9. #include "BsDepthStencilState.h"
  10. #include "BsSamplerState.h"
  11. #include "BsCoreApplication.h"
  12. #include "BsViewport.h"
  13. #include "BsRenderTarget.h"
  14. #include "BsRenderQueue.h"
  15. #include "BsCoreThread.h"
  16. #include "BsGpuParams.h"
  17. #include "BsProfilerCPU.h"
  18. #include "BsShader.h"
  19. #include "BsGpuParamBlockBuffer.h"
  20. #include "BsStaticRenderableHandler.h"
  21. #include "BsTime.h"
  22. #include "BsRenderableElement.h"
  23. #include "BsCoreObjectManager.h"
  24. #include "BsRenderBeastOptions.h"
  25. #include "BsSamplerOverrides.h"
  26. #include "BsLight.h"
  27. #include "BsRenderTexturePool.h"
  28. #include "BsRenderTargets.h"
  29. #include "BsRendererUtility.h"
  30. #include "BsRenderStateManager.h"
  31. using namespace std::placeholders;
  32. namespace BansheeEngine
  33. {
  34. RenderBeast::RenderBeast()
  35. :mOptions(bs_shared_ptr_new<RenderBeastOptions>()), mOptionsDirty(true), mStaticHandler(nullptr),
  36. mDefaultMaterial(nullptr), mPointLightMat(nullptr), mDirLightMat(nullptr)
  37. {
  38. }
  39. const StringID& RenderBeast::getName() const
  40. {
  41. static StringID name = "RenderBeast";
  42. return name;
  43. }
  44. void RenderBeast::initialize()
  45. {
  46. CoreRenderer::initialize();
  47. CoreThread::instance().queueCommand(std::bind(&RenderBeast::initializeCore, this));
  48. }
  49. void RenderBeast::destroy()
  50. {
  51. CoreRenderer::destroy();
  52. gCoreAccessor().queueCommand(std::bind(&RenderBeast::destroyCore, this));
  53. gCoreAccessor().submitToCoreThread(true);
  54. }
  55. void RenderBeast::initializeCore()
  56. {
  57. RendererUtility::startUp();
  58. mCoreOptions = bs_shared_ptr_new<RenderBeastOptions>();
  59. mStaticHandler = bs_new<StaticRenderableHandler>();
  60. mDefaultMaterial = bs_new<DefaultMaterial>();
  61. mPointLightMat = bs_new<PointLightMat>();
  62. mDirLightMat = bs_new<DirectionalLightMat>();
  63. // TODO - Replace these manually assigned states with two different versions of point light shader once I implement
  64. // a preprocessor parser for BSL
  65. DEPTH_STENCIL_STATE_DESC inGeomDSDesc;
  66. inGeomDSDesc.depthWriteEnable = false;
  67. inGeomDSDesc.depthReadEnable = false;
  68. mPointLightInGeomDSState = RenderStateCoreManager::instance().createDepthStencilState(inGeomDSDesc);
  69. DEPTH_STENCIL_STATE_DESC outGeomDSDesc;
  70. outGeomDSDesc.depthWriteEnable = false;
  71. mPointLightOutGeomDSState = RenderStateCoreManager::instance().createDepthStencilState(outGeomDSDesc);
  72. RASTERIZER_STATE_DESC inGeomRDesc;
  73. inGeomRDesc.cullMode = CULL_CLOCKWISE;
  74. mPointLightInGeomRState = RenderStateCoreManager::instance().createRasterizerState(inGeomRDesc);
  75. RASTERIZER_STATE_DESC outGeomRDesc;
  76. outGeomRDesc.cullMode = CULL_COUNTERCLOCKWISE;
  77. mPointLightOutGeomRState = RenderStateCoreManager::instance().createRasterizerState(outGeomRDesc);
  78. RenderTexturePool::startUp();
  79. }
  80. void RenderBeast::destroyCore()
  81. {
  82. if (mStaticHandler != nullptr)
  83. bs_delete(mStaticHandler);
  84. mRenderTargets.clear();
  85. mCameraData.clear();
  86. mRenderables.clear();
  87. RenderTexturePool::shutDown();
  88. bs_delete(mDefaultMaterial);
  89. bs_delete(mPointLightMat);
  90. bs_delete(mDirLightMat);
  91. mPointLightInGeomDSState = nullptr;
  92. mPointLightOutGeomDSState = nullptr;
  93. mPointLightInGeomRState = nullptr;
  94. mPointLightOutGeomRState = nullptr;
  95. RendererUtility::shutDown();
  96. assert(mSamplerOverrides.empty());
  97. }
  98. void RenderBeast::_notifyRenderableAdded(RenderableCore* renderable)
  99. {
  100. UINT32 renderableId = (UINT32)mRenderables.size();
  101. renderable->setRendererId(renderableId);
  102. mRenderables.push_back(RenderableData());
  103. mRenderableShaderData.push_back(RenderableShaderData());
  104. mWorldBounds.push_back(renderable->getBounds());
  105. RenderableData& renderableData = mRenderables.back();
  106. renderableData.renderable = renderable;
  107. RenderableShaderData& shaderData = mRenderableShaderData.back();
  108. shaderData.worldTransform = renderable->getTransform();
  109. shaderData.invWorldTransform = shaderData.worldTransform.inverseAffine();
  110. shaderData.worldNoScaleTransform = renderable->getTransformNoScale();
  111. shaderData.invWorldNoScaleTransform = shaderData.worldNoScaleTransform.inverseAffine();
  112. shaderData.worldDeterminantSign = shaderData.worldTransform.determinant3x3() >= 0.0f ? 1.0f : -1.0f;
  113. if (renderable->getRenderableType() == RenType_LitTextured)
  114. renderableData.controller = mStaticHandler;
  115. else
  116. renderableData.controller = nullptr;
  117. SPtr<MeshCore> mesh = renderable->getMesh();
  118. if (mesh != nullptr)
  119. {
  120. const MeshProperties& meshProps = mesh->getProperties();
  121. SPtr<VertexDeclarationCore> vertexDecl = mesh->getVertexData()->vertexDeclaration;
  122. for (UINT32 i = 0; i < meshProps.getNumSubMeshes(); i++)
  123. {
  124. renderableData.elements.push_back(BeastRenderableElement());
  125. BeastRenderableElement& renElement = renderableData.elements.back();
  126. renElement.mesh = mesh;
  127. renElement.subMesh = meshProps.getSubMesh(i);
  128. renElement.renderableId = renderableId;
  129. renElement.material = renderable->getMaterial(i);
  130. if (renElement.material == nullptr)
  131. renElement.material = renderable->getMaterial(0);
  132. if (renElement.material != nullptr && renElement.material->getShader() == nullptr)
  133. renElement.material = nullptr;
  134. // Validate mesh <-> shader vertex bindings
  135. if (renElement.material != nullptr)
  136. {
  137. UINT32 numPasses = renElement.material->getNumPasses();
  138. for (UINT32 j = 0; j < numPasses; j++)
  139. {
  140. SPtr<PassCore> pass = renElement.material->getPass(j);
  141. SPtr<VertexDeclarationCore> shaderDecl = pass->getVertexProgram()->getInputDeclaration();
  142. if (!vertexDecl->isCompatible(shaderDecl))
  143. {
  144. Vector<VertexElement> missingElements = vertexDecl->getMissingElements(shaderDecl);
  145. StringStream wrnStream;
  146. wrnStream << "Provided mesh is missing required vertex attributes to render with the provided shader. Missing elements: " << std::endl;
  147. for (auto& entry : missingElements)
  148. wrnStream << "\t" << toString(entry.getSemantic()) << entry.getSemanticIdx() << std::endl;
  149. LOGWRN(wrnStream.str());
  150. break;
  151. }
  152. }
  153. }
  154. // If no material use the default material
  155. if (renElement.material == nullptr)
  156. renElement.material = mDefaultMaterial->getMaterial();
  157. auto iterFind = mSamplerOverrides.find(renElement.material);
  158. if (iterFind != mSamplerOverrides.end())
  159. {
  160. renElement.samplerOverrides = iterFind->second;
  161. iterFind->second->refCount++;
  162. }
  163. else
  164. {
  165. MaterialSamplerOverrides* samplerOverrides = SamplerOverrideUtility::generateSamplerOverrides(renElement.material, mCoreOptions);
  166. mSamplerOverrides[renElement.material] = samplerOverrides;
  167. renElement.samplerOverrides = samplerOverrides;
  168. samplerOverrides->refCount++;
  169. }
  170. if (renderableData.controller != nullptr)
  171. renderableData.controller->initializeRenderElem(renElement);
  172. }
  173. }
  174. }
  175. void RenderBeast::_notifyRenderableRemoved(RenderableCore* renderable)
  176. {
  177. UINT32 renderableId = renderable->getRendererId();
  178. RenderableCore* lastRenerable = mRenderables.back().renderable;
  179. UINT32 lastRenderableId = lastRenerable->getRendererId();
  180. Vector<BeastRenderableElement>& elements = mRenderables[renderableId].elements;
  181. for (auto& element : elements)
  182. {
  183. auto iterFind = mSamplerOverrides.find(element.material);
  184. assert(iterFind != mSamplerOverrides.end());
  185. MaterialSamplerOverrides* samplerOverrides = iterFind->second;
  186. samplerOverrides->refCount--;
  187. if (samplerOverrides->refCount == 0)
  188. {
  189. SamplerOverrideUtility::destroySamplerOverrides(samplerOverrides);
  190. mSamplerOverrides.erase(iterFind);
  191. }
  192. element.samplerOverrides = nullptr;
  193. }
  194. if (renderableId != lastRenderableId)
  195. {
  196. // Swap current last element with the one we want to erase
  197. std::swap(mRenderables[renderableId], mRenderables[lastRenderableId]);
  198. std::swap(mWorldBounds[renderableId], mWorldBounds[lastRenderableId]);
  199. std::swap(mRenderableShaderData[renderableId], mRenderableShaderData[lastRenderableId]);
  200. lastRenerable->setRendererId(renderableId);
  201. Vector<BeastRenderableElement>& lastRenderableElements = mRenderables[renderableId].elements;
  202. for (auto& element : elements)
  203. element.renderableId = renderableId;
  204. }
  205. // Last element is the one we want to erase
  206. mRenderables.erase(mRenderables.end() - 1);
  207. mWorldBounds.erase(mWorldBounds.end() - 1);
  208. mRenderableShaderData.erase(mRenderableShaderData.end() - 1);
  209. }
  210. void RenderBeast::_notifyRenderableUpdated(RenderableCore* renderable)
  211. {
  212. UINT32 renderableId = renderable->getRendererId();
  213. RenderableShaderData& shaderData = mRenderableShaderData[renderableId];
  214. shaderData.worldTransform = renderable->getTransform();
  215. shaderData.invWorldTransform = shaderData.worldTransform.inverseAffine();
  216. shaderData.worldNoScaleTransform = renderable->getTransformNoScale();
  217. shaderData.invWorldNoScaleTransform = shaderData.worldNoScaleTransform.inverseAffine();
  218. shaderData.worldDeterminantSign = shaderData.worldTransform.determinant3x3() >= 0.0f ? 1.0f : -1.0f;
  219. mWorldBounds[renderableId] = renderable->getBounds();
  220. }
  221. void RenderBeast::_notifyLightAdded(LightCore* light)
  222. {
  223. if (light->getType() == LightType::Directional)
  224. {
  225. UINT32 lightId = (UINT32)mDirectionalLights.size();
  226. light->setRendererId(lightId);
  227. mDirectionalLights.push_back(LightData());
  228. LightData& lightData = mDirectionalLights.back();
  229. lightData.internal = light;
  230. }
  231. else
  232. {
  233. UINT32 lightId = (UINT32)mPointLights.size();
  234. light->setRendererId(lightId);
  235. mPointLights.push_back(LightData());
  236. mLightWorldBounds.push_back(light->getBounds());
  237. LightData& lightData = mPointLights.back();
  238. lightData.internal = light;
  239. }
  240. }
  241. void RenderBeast::_notifyLightUpdated(LightCore* light)
  242. {
  243. UINT32 lightId = light->getRendererId();
  244. if (light->getType() != LightType::Directional)
  245. mLightWorldBounds[lightId] = light->getBounds();
  246. }
  247. void RenderBeast::_notifyLightRemoved(LightCore* light)
  248. {
  249. UINT32 lightId = light->getRendererId();
  250. if (light->getType() == LightType::Directional)
  251. {
  252. LightCore* lastLight = mDirectionalLights.back().internal;
  253. UINT32 lastLightId = lastLight->getRendererId();
  254. if (lightId != lastLightId)
  255. {
  256. // Swap current last element with the one we want to erase
  257. std::swap(mDirectionalLights[lightId], mDirectionalLights[lastLightId]);
  258. lastLight->setRendererId(lightId);
  259. }
  260. // Last element is the one we want to erase
  261. mDirectionalLights.erase(mDirectionalLights.end() - 1);
  262. }
  263. else
  264. {
  265. LightCore* lastLight = mPointLights.back().internal;
  266. UINT32 lastLightId = lastLight->getRendererId();
  267. if (lightId != lastLightId)
  268. {
  269. // Swap current last element with the one we want to erase
  270. std::swap(mPointLights[lightId], mPointLights[lastLightId]);
  271. std::swap(mLightWorldBounds[lightId], mLightWorldBounds[lastLightId]);
  272. lastLight->setRendererId(lightId);
  273. }
  274. // Last element is the one we want to erase
  275. mPointLights.erase(mPointLights.end() - 1);
  276. mLightWorldBounds.erase(mLightWorldBounds.end() - 1);
  277. }
  278. }
  279. void RenderBeast::_notifyCameraAdded(const CameraCore* camera)
  280. {
  281. SPtr<RenderTargetCore> renderTarget = camera->getViewport()->getTarget();
  282. if (renderTarget == nullptr)
  283. return;
  284. CameraData& camData = mCameraData[camera];
  285. camData.opaqueQueue = bs_shared_ptr_new<RenderQueue>(mCoreOptions->stateReductionMode);
  286. StateReduction transparentStateReduction = mCoreOptions->stateReductionMode;
  287. if (transparentStateReduction == StateReduction::Material)
  288. transparentStateReduction = StateReduction::Distance; // Transparent object MUST be sorted by distance
  289. camData.transparentQueue = bs_shared_ptr_new<RenderQueue>(transparentStateReduction);
  290. // Register in render target list
  291. auto findIter = std::find_if(mRenderTargets.begin(), mRenderTargets.end(),
  292. [&](const RenderTargetData& x) { return x.target == renderTarget; });
  293. if (findIter != mRenderTargets.end())
  294. {
  295. findIter->cameras.push_back(camera);
  296. }
  297. else
  298. {
  299. mRenderTargets.push_back(RenderTargetData());
  300. RenderTargetData& renderTargetData = mRenderTargets.back();
  301. renderTargetData.target = renderTarget;
  302. renderTargetData.cameras.push_back(camera);
  303. }
  304. // Sort render targets based on priority
  305. auto cameraComparer = [&](const CameraCore* a, const CameraCore* b) { return a->getPriority() > b->getPriority(); };
  306. auto renderTargetInfoComparer = [&](const RenderTargetData& a, const RenderTargetData& b)
  307. { return a.target->getProperties().getPriority() > b.target->getProperties().getPriority(); };
  308. std::sort(begin(mRenderTargets), end(mRenderTargets), renderTargetInfoComparer);
  309. for (auto& camerasPerTarget : mRenderTargets)
  310. {
  311. Vector<const CameraCore*>& cameras = camerasPerTarget.cameras;
  312. std::sort(begin(cameras), end(cameras), cameraComparer);
  313. }
  314. }
  315. void RenderBeast::_notifyCameraRemoved(const CameraCore* camera)
  316. {
  317. mCameraData.erase(camera);
  318. // Remove from render target list
  319. for (auto iterTarget = mRenderTargets.begin(); iterTarget != mRenderTargets.end(); ++iterTarget)
  320. {
  321. RenderTargetData& target = *iterTarget;
  322. for (auto iterCam = target.cameras.begin(); iterCam != target.cameras.end(); ++iterCam)
  323. {
  324. if (camera == *iterCam)
  325. {
  326. target.cameras.erase(iterCam);
  327. break;
  328. }
  329. }
  330. if (target.cameras.empty())
  331. {
  332. mRenderTargets.erase(iterTarget);
  333. break;
  334. }
  335. }
  336. }
  337. void RenderBeast::setOptions(const SPtr<CoreRendererOptions>& options)
  338. {
  339. mOptions = std::static_pointer_cast<RenderBeastOptions>(options);
  340. mOptionsDirty = true;
  341. }
  342. SPtr<CoreRendererOptions> RenderBeast::getOptions() const
  343. {
  344. return mOptions;
  345. }
  346. void RenderBeast::renderAll()
  347. {
  348. // Sync all dirty sim thread CoreObject data to core thread
  349. CoreObjectManager::instance().syncToCore(gCoreAccessor());
  350. if (mOptionsDirty)
  351. {
  352. gCoreAccessor().queueCommand(std::bind(&RenderBeast::syncRenderOptions, this, *mOptions));
  353. mOptionsDirty = false;
  354. }
  355. gCoreAccessor().queueCommand(std::bind(&RenderBeast::renderAllCore, this, gTime().getTime()));
  356. }
  357. void RenderBeast::syncRenderOptions(const RenderBeastOptions& options)
  358. {
  359. bool filteringChanged = mCoreOptions->filtering != options.filtering;
  360. if (options.filtering == RenderBeastFiltering::Anisotropic)
  361. filteringChanged |= mCoreOptions->anisotropyMax != options.anisotropyMax;
  362. if (filteringChanged)
  363. refreshSamplerOverrides(true);
  364. *mCoreOptions = options;
  365. for (auto& cameraData : mCameraData)
  366. {
  367. cameraData.second.opaqueQueue->setStateReduction(mCoreOptions->stateReductionMode);
  368. StateReduction transparentStateReduction = mCoreOptions->stateReductionMode;
  369. if (transparentStateReduction == StateReduction::Material)
  370. transparentStateReduction = StateReduction::Distance; // Transparent object MUST be sorted by distance
  371. cameraData.second.transparentQueue->setStateReduction(transparentStateReduction);
  372. }
  373. }
  374. void RenderBeast::renderAllCore(float time)
  375. {
  376. THROW_IF_NOT_CORE_THREAD;
  377. gProfilerCPU().beginSample("renderAllCore");
  378. // Note: I'm iterating over all sampler states every frame. If this ends up being a performance
  379. // issue consider handling this internally in MaterialCore which can only do it when sampler states
  380. // are actually modified after sync
  381. refreshSamplerOverrides();
  382. // Update global per-frame hardware buffers
  383. mStaticHandler->updatePerFrameBuffers(time);
  384. // Generate render queues per camera
  385. for (auto& cameraData : mCameraData)
  386. {
  387. const CameraCore* camera = cameraData.first;
  388. determineVisible(*camera);
  389. }
  390. // Render everything, target by target
  391. for (auto& renderTargetData : mRenderTargets)
  392. {
  393. SPtr<RenderTargetCore> target = renderTargetData.target;
  394. Vector<const CameraCore*>& cameras = renderTargetData.cameras;
  395. RenderAPICore::instance().beginFrame();
  396. UINT32 numCameras = (UINT32)cameras.size();
  397. for (UINT32 i = 0; i < numCameras; i++)
  398. render(renderTargetData, i);
  399. RenderAPICore::instance().endFrame();
  400. RenderAPICore::instance().swapBuffers(target);
  401. }
  402. gProfilerCPU().endSample("renderAllCore");
  403. }
  404. void RenderBeast::render(RenderTargetData& rtData, UINT32 camIdx)
  405. {
  406. gProfilerCPU().beginSample("Render");
  407. const CameraCore* camera = rtData.cameras[camIdx];
  408. CameraData& camData = mCameraData[camera];
  409. SPtr<ViewportCore> viewport = camera->getViewport();
  410. CameraShaderData cameraShaderData = getCameraShaderData(*camera);
  411. mStaticHandler->updatePerCameraBuffers(cameraShaderData);
  412. // Render scene objects to g-buffer
  413. bool hasGBuffer = ((UINT32)camera->getFlags() & (UINT32)CameraFlags::Overlay) == 0;
  414. if (hasGBuffer)
  415. {
  416. bool createGBuffer = camData.target == nullptr ||
  417. camData.target->getHDR() != mCoreOptions->hdr ||
  418. camData.target->getNumSamples() != mCoreOptions->msaa;
  419. if (createGBuffer)
  420. camData.target = RenderTargets::create(viewport, mCoreOptions->hdr, mCoreOptions->msaa);
  421. camData.target->allocate();
  422. camData.target->bindGBuffer();
  423. }
  424. else
  425. camData.target = nullptr;
  426. // Trigger pre-scene callbacks
  427. auto iterCameraCallbacks = mRenderCallbacks.find(camera);
  428. if (iterCameraCallbacks != mRenderCallbacks.end())
  429. {
  430. for (auto& callbackPair : iterCameraCallbacks->second)
  431. {
  432. const RenderCallbackData& callbackData = callbackPair.second;
  433. if (callbackData.overlay)
  434. continue;
  435. if (callbackPair.first >= 0)
  436. break;
  437. callbackData.callback();
  438. }
  439. }
  440. if (hasGBuffer)
  441. {
  442. // Render base pass
  443. const Vector<RenderQueueElement>& opaqueElements = camData.opaqueQueue->getSortedElements();
  444. for (auto iter = opaqueElements.begin(); iter != opaqueElements.end(); ++iter)
  445. {
  446. BeastRenderableElement* renderElem = static_cast<BeastRenderableElement*>(iter->renderElem);
  447. SPtr<MaterialCore> material = renderElem->material;
  448. UINT32 rendererId = renderElem->renderableId;
  449. Matrix4 worldViewProjMatrix = cameraShaderData.viewProj * mRenderableShaderData[rendererId].worldTransform;
  450. mStaticHandler->updatePerObjectBuffers(*renderElem, mRenderableShaderData[rendererId], worldViewProjMatrix);
  451. mStaticHandler->bindGlobalBuffers(*renderElem); // Note: If I can keep global buffer slot indexes the same between shaders I could only bind these once
  452. mStaticHandler->bindPerObjectBuffers(*renderElem);
  453. if (iter->applyPass)
  454. {
  455. SPtr<PassCore> pass = material->getPass(iter->passIdx);
  456. setPass(pass);
  457. }
  458. SPtr<PassParametersCore> passParams = material->getPassParameters(iter->passIdx);
  459. if (renderElem->samplerOverrides != nullptr)
  460. setPassParams(passParams, &renderElem->samplerOverrides->passes[iter->passIdx]);
  461. else
  462. setPassParams(passParams, nullptr);
  463. gRendererUtility().draw(iter->renderElem->mesh, iter->renderElem->subMesh);
  464. }
  465. camData.target->bindSceneColor();
  466. // Render light pass
  467. SPtr<GpuParamBlockBufferCore> perCameraBuffer = mStaticHandler->getPerCameraParams().getBuffer();
  468. SPtr<MaterialCore> dirMaterial = mDirLightMat->getMaterial();
  469. SPtr<PassCore> dirPass = dirMaterial->getPass(0);
  470. setPass(dirPass);
  471. mDirLightMat->setStaticParameters(camData.target, perCameraBuffer);
  472. for (auto& light : mDirectionalLights)
  473. {
  474. if (!light.internal->getIsActive())
  475. continue;
  476. mDirLightMat->setParameters(light.internal);
  477. // TODO - Bind parameters to the pipeline manually as I don't need to re-bind gbuffer textures for every light
  478. setPassParams(dirMaterial->getPassParameters(0), nullptr);
  479. gRendererUtility().drawScreenQuad(*viewport);
  480. }
  481. SPtr<MaterialCore> pointMaterial = mPointLightMat->getMaterial();
  482. SPtr<PassCore> pointPass = pointMaterial->getPass(0);
  483. // TODO - Possibly use instanced drawing here as only two meshes are drawn with various properties
  484. setPass(pointPass);
  485. mPointLightMat->setStaticParameters(camData.target, perCameraBuffer);
  486. // TODO - Cull lights based on visibility, right now I just iterate over all of them.
  487. for (auto& light : mPointLights)
  488. {
  489. if (!light.internal->getIsActive())
  490. continue;
  491. mPointLightMat->setParameters(light.internal);
  492. float distToLight = (light.internal->getBounds().getCenter() - camera->getPosition()).squaredLength();
  493. float boundRadius = light.internal->getBounds().getRadius() * 1.05f + camera->getNearClipDistance() * 2.0f;
  494. // TODO - Replace these manually assigned states with two different versions of point light shader once I implement
  495. // a preprocessor parser for BSL
  496. RenderAPICore& rapi = RenderAPICore::instance();
  497. bool cameraInLightGeometry = distToLight < boundRadius * boundRadius;
  498. if(cameraInLightGeometry)
  499. {
  500. // Draw back faces with no depth testing
  501. rapi.setDepthStencilState(mPointLightInGeomDSState, 0);
  502. rapi.setRasterizerState(mPointLightInGeomRState);
  503. }
  504. else
  505. {
  506. // Draw front faces with depth testing
  507. rapi.setDepthStencilState(mPointLightOutGeomDSState, 0);
  508. rapi.setRasterizerState(mPointLightOutGeomRState);
  509. }
  510. // TODO - Bind parameters to the pipeline manually as I don't need to re-bind gbuffer textures for every light
  511. setPassParams(pointMaterial->getPassParameters(0), nullptr);
  512. SPtr<MeshCore> mesh = light.internal->getMesh();
  513. gRendererUtility().draw(mesh, mesh->getProperties().getSubMesh(0));
  514. }
  515. }
  516. else
  517. {
  518. // Prepare final render target
  519. SPtr<RenderTargetCore> target = rtData.target;
  520. RenderAPICore::instance().setRenderTarget(target);
  521. RenderAPICore::instance().setViewport(viewport->getNormArea());
  522. // If first camera in render target, prepare the render target
  523. if (camIdx == 0)
  524. {
  525. UINT32 clearBuffers = 0;
  526. if (viewport->getRequiresColorClear())
  527. clearBuffers |= FBT_COLOR;
  528. if (viewport->getRequiresDepthClear())
  529. clearBuffers |= FBT_DEPTH;
  530. if (viewport->getRequiresStencilClear())
  531. clearBuffers |= FBT_STENCIL;
  532. if (clearBuffers != 0)
  533. {
  534. RenderAPICore::instance().clearViewport(clearBuffers, viewport->getClearColor(),
  535. viewport->getClearDepthValue(), viewport->getClearStencilValue());
  536. }
  537. }
  538. }
  539. // Render transparent objects (TODO - No lighting yet)
  540. const Vector<RenderQueueElement>& transparentElements = camData.transparentQueue->getSortedElements();
  541. for (auto iter = transparentElements.begin(); iter != transparentElements.end(); ++iter)
  542. {
  543. BeastRenderableElement* renderElem = static_cast<BeastRenderableElement*>(iter->renderElem);
  544. SPtr<MaterialCore> material = renderElem->material;
  545. UINT32 rendererId = renderElem->renderableId;
  546. Matrix4 worldViewProjMatrix = cameraShaderData.viewProj * mRenderableShaderData[rendererId].worldTransform;
  547. mStaticHandler->updatePerObjectBuffers(*renderElem, mRenderableShaderData[rendererId], worldViewProjMatrix);
  548. mStaticHandler->bindGlobalBuffers(*renderElem); // Note: If I can keep global buffer slot indexes the same between shaders I could only bind these once
  549. mStaticHandler->bindPerObjectBuffers(*renderElem);
  550. if (iter->applyPass)
  551. {
  552. SPtr<PassCore> pass = material->getPass(iter->passIdx);
  553. setPass(pass);
  554. }
  555. SPtr<PassParametersCore> passParams = material->getPassParameters(iter->passIdx);
  556. if (renderElem->samplerOverrides != nullptr)
  557. setPassParams(passParams, &renderElem->samplerOverrides->passes[iter->passIdx]);
  558. else
  559. setPassParams(passParams, nullptr);
  560. gRendererUtility().draw(iter->renderElem->mesh, iter->renderElem->subMesh);
  561. }
  562. camData.opaqueQueue->clear();
  563. camData.transparentQueue->clear();
  564. // Render non-overlay post-scene callbacks
  565. if (iterCameraCallbacks != mRenderCallbacks.end())
  566. {
  567. for (auto& callbackPair : iterCameraCallbacks->second)
  568. {
  569. const RenderCallbackData& callbackData = callbackPair.second;
  570. if (callbackData.overlay || callbackPair.first < 0)
  571. continue;
  572. callbackData.callback();
  573. }
  574. }
  575. if (hasGBuffer)
  576. {
  577. // TODO - Instead of doing a separate resolve here I could potentially perform a resolve directly in the
  578. // light pass.
  579. camData.target->resolve();
  580. }
  581. // Render overlay post-scene callbacks
  582. if (iterCameraCallbacks != mRenderCallbacks.end())
  583. {
  584. for (auto& callbackPair : iterCameraCallbacks->second)
  585. {
  586. const RenderCallbackData& callbackData = callbackPair.second;
  587. if (!callbackData.overlay)
  588. continue;
  589. callbackData.callback();
  590. }
  591. }
  592. if (hasGBuffer)
  593. camData.target->release();
  594. gProfilerCPU().endSample("Render");
  595. }
  596. void RenderBeast::determineVisible(const CameraCore& camera)
  597. {
  598. CameraData& cameraData = mCameraData[&camera];
  599. UINT64 cameraLayers = camera.getLayers();
  600. ConvexVolume worldFrustum = camera.getWorldFrustum();
  601. // Update per-object param buffers and queue render elements
  602. for (auto& renderableData : mRenderables)
  603. {
  604. RenderableCore* renderable = renderableData.renderable;
  605. RenderableHandler* controller = renderableData.controller;
  606. UINT32 renderableType = renderable->getRenderableType();
  607. UINT32 rendererId = renderable->getRendererId();
  608. if ((renderable->getLayer() & cameraLayers) == 0)
  609. continue;
  610. // Do frustum culling
  611. // TODO - This is bound to be a bottleneck at some point. When it is ensure that intersect
  612. // methods use vector operations, as it is trivial to update them.
  613. const Sphere& boundingSphere = mWorldBounds[rendererId].getSphere();
  614. if (worldFrustum.intersects(boundingSphere))
  615. {
  616. // More precise with the box
  617. const AABox& boundingBox = mWorldBounds[rendererId].getBox();
  618. if (worldFrustum.intersects(boundingBox))
  619. {
  620. float distanceToCamera = (camera.getPosition() - boundingBox.getCenter()).length();
  621. for (auto& renderElem : renderableData.elements)
  622. {
  623. bool isTransparent = (renderElem.material->getShader()->getFlags() & (UINT32)ShaderFlags::Transparent) != 0;
  624. if (isTransparent)
  625. cameraData.transparentQueue->add(&renderElem, distanceToCamera);
  626. else
  627. cameraData.opaqueQueue->add(&renderElem, distanceToCamera);
  628. }
  629. }
  630. }
  631. }
  632. cameraData.opaqueQueue->sort();
  633. cameraData.transparentQueue->sort();
  634. }
  635. Vector2 RenderBeast::getDeviceZTransform()
  636. {
  637. RenderAPICore& rapi = RenderAPICore::instance();
  638. Vector2 output;
  639. output.x = rapi.getMaximumDepthInputValue() - rapi.getMinimumDepthInputValue();
  640. output.y = -rapi.getMinimumDepthInputValue();
  641. return output;
  642. }
  643. CameraShaderData RenderBeast::getCameraShaderData(const CameraCore& camera)
  644. {
  645. CameraShaderData data;
  646. data.proj = camera.getProjectionMatrixRS();
  647. data.view = camera.getViewMatrix();
  648. data.viewProj = data.proj * data.view;
  649. data.invProj = data.proj.inverse();
  650. data.invViewProj = data.viewProj.inverse();
  651. data.viewDir = camera.getForward();
  652. data.viewOrigin = camera.getPosition();
  653. data.deviceZToWorldZ = getDeviceZTransform();
  654. SPtr<ViewportCore> viewport = camera.getViewport();
  655. SPtr<RenderTargetCore> rt = viewport->getTarget();
  656. float halfWidth = viewport->getWidth() * 0.5f;
  657. float halfHeight = viewport->getHeight() * 0.5f;
  658. float rtWidth = (float)rt->getProperties().getWidth();
  659. float rtHeight = (float)rt->getProperties().getHeight();
  660. RenderAPICore& rapi = RenderAPICore::instance();
  661. data.clipToUVScaleOffset.x = halfWidth / rtWidth;
  662. data.clipToUVScaleOffset.y = -halfHeight / rtHeight;
  663. data.clipToUVScaleOffset.z = viewport->getX() / rtWidth + (halfWidth + rapi.getHorizontalTexelOffset()) / rtWidth;
  664. data.clipToUVScaleOffset.w = viewport->getY() / rtHeight + (halfHeight + rapi.getVerticalTexelOffset()) / rtHeight;
  665. return data;
  666. }
  667. void RenderBeast::refreshSamplerOverrides(bool force)
  668. {
  669. for (auto& entry : mSamplerOverrides)
  670. {
  671. SPtr<MaterialCore> material = entry.first;
  672. if (force)
  673. {
  674. SamplerOverrideUtility::destroySamplerOverrides(entry.second);
  675. entry.second = SamplerOverrideUtility::generateSamplerOverrides(material, mCoreOptions);
  676. }
  677. else
  678. {
  679. MaterialSamplerOverrides* materialOverrides = entry.second;
  680. UINT32 numPasses = material->getNumPasses();
  681. assert(numPasses == materialOverrides->numPasses);
  682. for (UINT32 i = 0; i < numPasses; i++)
  683. {
  684. SPtr<PassParametersCore> passParams = material->getPassParameters(i);
  685. PassSamplerOverrides& passOverrides = materialOverrides->passes[i];
  686. for (UINT32 j = 0; j < PassParametersCore::NUM_PARAMS; j++)
  687. {
  688. StageSamplerOverrides& stageOverrides = passOverrides.stages[j];
  689. SPtr<GpuParamsCore> params = passParams->getParamByIdx(j);
  690. if (params == nullptr)
  691. continue;
  692. const GpuParamDesc& paramDesc = params->getParamDesc();
  693. for (auto iter = paramDesc.samplers.begin(); iter != paramDesc.samplers.end(); ++iter)
  694. {
  695. UINT32 slot = iter->second.slot;
  696. SPtr<SamplerStateCore> samplerState = params->getSamplerState(slot);
  697. assert(stageOverrides.numStates > slot);
  698. if (samplerState != stageOverrides.stateOverrides[slot])
  699. {
  700. if (samplerState != nullptr)
  701. stageOverrides.stateOverrides[slot] = SamplerOverrideUtility::generateSamplerOverride(samplerState, mCoreOptions);
  702. else
  703. stageOverrides.stateOverrides[slot] = SamplerOverrideUtility::generateSamplerOverride(SamplerStateCore::getDefault(), mCoreOptions);;
  704. }
  705. }
  706. }
  707. }
  708. }
  709. }
  710. }
  711. void RenderBeast::setPass(const SPtr<PassCore>& pass)
  712. {
  713. THROW_IF_NOT_CORE_THREAD;
  714. RenderAPICore& rs = RenderAPICore::instance();
  715. struct StageData
  716. {
  717. GpuProgramType type;
  718. bool enable;
  719. SPtr<GpuProgramCore> program;
  720. };
  721. const UINT32 numStages = 6;
  722. StageData stages[numStages] =
  723. {
  724. { GPT_VERTEX_PROGRAM, pass->hasVertexProgram(), pass->getVertexProgram() },
  725. { GPT_FRAGMENT_PROGRAM, pass->hasFragmentProgram(), pass->getFragmentProgram() },
  726. { GPT_GEOMETRY_PROGRAM, pass->hasGeometryProgram(), pass->getGeometryProgram() },
  727. { GPT_HULL_PROGRAM, pass->hasHullProgram(), pass->getHullProgram() },
  728. { GPT_DOMAIN_PROGRAM, pass->hasDomainProgram(), pass->getDomainProgram() },
  729. { GPT_COMPUTE_PROGRAM, pass->hasComputeProgram(), pass->getComputeProgram() }
  730. };
  731. for (UINT32 i = 0; i < numStages; i++)
  732. {
  733. const StageData& stage = stages[i];
  734. if (stage.enable)
  735. rs.bindGpuProgram(stage.program);
  736. else
  737. rs.unbindGpuProgram(stage.type);
  738. }
  739. // Set up non-texture related pass settings
  740. if (pass->getBlendState() != nullptr)
  741. rs.setBlendState(pass->getBlendState());
  742. else
  743. rs.setBlendState(BlendStateCore::getDefault());
  744. if (pass->getDepthStencilState() != nullptr)
  745. rs.setDepthStencilState(pass->getDepthStencilState(), pass->getStencilRefValue());
  746. else
  747. rs.setDepthStencilState(DepthStencilStateCore::getDefault(), pass->getStencilRefValue());
  748. if (pass->getRasterizerState() != nullptr)
  749. rs.setRasterizerState(pass->getRasterizerState());
  750. else
  751. rs.setRasterizerState(RasterizerStateCore::getDefault());
  752. }
  753. void RenderBeast::setPassParams(const SPtr<PassParametersCore>& passParams, const PassSamplerOverrides* samplerOverrides)
  754. {
  755. THROW_IF_NOT_CORE_THREAD;
  756. RenderAPICore& rs = RenderAPICore::instance();
  757. struct StageData
  758. {
  759. GpuProgramType type;
  760. SPtr<GpuParamsCore> params;
  761. };
  762. const UINT32 numStages = 6;
  763. StageData stages[numStages] =
  764. {
  765. { GPT_VERTEX_PROGRAM, passParams->mVertParams },
  766. { GPT_FRAGMENT_PROGRAM, passParams->mFragParams },
  767. { GPT_GEOMETRY_PROGRAM, passParams->mGeomParams },
  768. { GPT_HULL_PROGRAM, passParams->mHullParams },
  769. { GPT_DOMAIN_PROGRAM, passParams->mDomainParams },
  770. { GPT_COMPUTE_PROGRAM, passParams->mComputeParams }
  771. };
  772. for (UINT32 i = 0; i < numStages; i++)
  773. {
  774. const StageData& stage = stages[i];
  775. SPtr<GpuParamsCore> params = stage.params;
  776. if (params == nullptr)
  777. continue;
  778. const GpuParamDesc& paramDesc = params->getParamDesc();
  779. for (auto iter = paramDesc.samplers.begin(); iter != paramDesc.samplers.end(); ++iter)
  780. {
  781. SPtr<SamplerStateCore> samplerState;
  782. if (samplerOverrides != nullptr)
  783. samplerState = samplerOverrides->stages[i].stateOverrides[iter->second.slot];
  784. else
  785. samplerState = params->getSamplerState(iter->second.slot);
  786. if (samplerState == nullptr)
  787. rs.setSamplerState(stage.type, iter->second.slot, SamplerStateCore::getDefault());
  788. else
  789. rs.setSamplerState(stage.type, iter->second.slot, samplerState);
  790. }
  791. for (auto iter = paramDesc.textures.begin(); iter != paramDesc.textures.end(); ++iter)
  792. {
  793. SPtr<TextureCore> texture = params->getTexture(iter->second.slot);
  794. if (!params->isLoadStoreTexture(iter->second.slot))
  795. {
  796. if (texture == nullptr)
  797. rs.setTexture(stage.type, iter->second.slot, false, nullptr);
  798. else
  799. rs.setTexture(stage.type, iter->second.slot, true, texture);
  800. }
  801. else
  802. {
  803. const TextureSurface& surface = params->getLoadStoreSurface(iter->second.slot);
  804. if (texture == nullptr)
  805. rs.setLoadStoreTexture(stage.type, iter->second.slot, false, nullptr, surface);
  806. else
  807. rs.setLoadStoreTexture(stage.type, iter->second.slot, true, texture, surface);
  808. }
  809. }
  810. rs.setConstantBuffers(stage.type, params);
  811. }
  812. }
  813. }