| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007 |
- #include "BsMatrix3.h"
- #include "BsQuaternion.h"
- #include "BsMath.h"
- namespace BansheeEngine
- {
- const float Matrix3::EPSILON = 1e-06f;
- const Matrix3 Matrix3::ZERO(0,0,0,0,0,0,0,0,0);
- const Matrix3 Matrix3::IDENTITY(1,0,0,0,1,0,0,0,1);
- const float Matrix3::SVD_EPSILON = 1e-04f;
- const unsigned int Matrix3::SVD_MAX_ITERS = 32;
- const Matrix3::EulerAngleOrderData Matrix3::EA_LOOKUP[6] =
- { { 0, 1, 2, 1.0f}, { 0, 2, 1, -1.0f}, { 1, 0, 2, -1.0f},
- { 1, 2, 0, 1.0f}, { 2, 0, 1, 1.0f}, { 2, 1, 0, -1.0f} };;
- Vector3 Matrix3::getColumn(UINT32 col) const
- {
- assert(col < 3);
-
- return Vector3(m[0][col],m[1][col], m[2][col]);
- }
- void Matrix3::setColumn(UINT32 col, const Vector3& vec)
- {
- assert(col < 3);
- m[0][col] = vec.x;
- m[1][col] = vec.y;
- m[2][col] = vec.z;
- }
- void Matrix3::fromAxes(const Vector3& xAxis, const Vector3& yAxis, const Vector3& zAxis)
- {
- setColumn(0, xAxis);
- setColumn(1, yAxis);
- setColumn(2, zAxis);
- }
- bool Matrix3::operator== (const Matrix3& rhs) const
- {
- for (UINT32 row = 0; row < 3; row++)
- {
- for (UINT32 col = 0; col < 3; col++)
- {
- if (m[row][col] != rhs.m[row][col])
- return false;
- }
- }
- return true;
- }
- bool Matrix3::operator!= (const Matrix3& rhs) const
- {
- return !operator==(rhs);
- }
- Matrix3 Matrix3::operator+ (const Matrix3& rhs) const
- {
- Matrix3 sum;
- for (UINT32 row = 0; row < 3; row++)
- {
- for (UINT32 col = 0; col < 3; col++)
- {
- sum.m[row][col] = m[row][col] + rhs.m[row][col];
- }
- }
- return sum;
- }
- Matrix3 Matrix3::operator- (const Matrix3& rhs) const
- {
- Matrix3 diff;
- for (UINT32 row = 0; row < 3; row++)
- {
- for (UINT32 col = 0; col < 3; col++)
- {
- diff.m[row][col] = m[row][col] -
- rhs.m[row][col];
- }
- }
- return diff;
- }
- Matrix3 Matrix3::operator* (const Matrix3& rhs) const
- {
- Matrix3 prod;
- for (UINT32 row = 0; row < 3; row++)
- {
- for (UINT32 col = 0; col < 3; col++)
- {
- prod.m[row][col] = m[row][0]*rhs.m[0][col] +
- m[row][1]*rhs.m[1][col] + m[row][2]*rhs.m[2][col];
- }
- }
- return prod;
- }
- Matrix3 Matrix3::operator- () const
- {
- Matrix3 neg;
- for (UINT32 row = 0; row < 3; row++)
- {
- for (UINT32 col = 0; col < 3; col++)
- neg[row][col] = -m[row][col];
- }
- return neg;
- }
- Matrix3 Matrix3::operator* (float rhs) const
- {
- Matrix3 prod;
- for (UINT32 row = 0; row < 3; row++)
- {
- for (UINT32 col = 0; col < 3; col++)
- prod[row][col] = rhs*m[row][col];
- }
- return prod;
- }
- Matrix3 operator* (float lhs, const Matrix3& rhs)
- {
- Matrix3 prod;
- for (UINT32 row = 0; row < 3; row++)
- {
- for (UINT32 col = 0; col < 3; col++)
- prod[row][col] = lhs*rhs.m[row][col];
- }
- return prod;
- }
- Vector3 Matrix3::transform(const Vector3& vec) const
- {
- Vector3 prod;
- for (UINT32 row = 0; row < 3; row++)
- {
- prod[row] =
- m[row][0]*vec[0] +
- m[row][1]*vec[1] +
- m[row][2]*vec[2];
- }
- return prod;
- }
- Matrix3 Matrix3::transpose() const
- {
- Matrix3 matTranspose;
- for (UINT32 row = 0; row < 3; row++)
- {
- for (UINT32 col = 0; col < 3; col++)
- matTranspose[row][col] = m[col][row];
- }
- return matTranspose;
- }
- bool Matrix3::inverse(Matrix3& matInv, float tolerance) const
- {
- matInv[0][0] = m[1][1]*m[2][2] - m[1][2]*m[2][1];
- matInv[0][1] = m[0][2]*m[2][1] - m[0][1]*m[2][2];
- matInv[0][2] = m[0][1]*m[1][2] - m[0][2]*m[1][1];
- matInv[1][0] = m[1][2]*m[2][0] - m[1][0]*m[2][2];
- matInv[1][1] = m[0][0]*m[2][2] - m[0][2]*m[2][0];
- matInv[1][2] = m[0][2]*m[1][0] - m[0][0]*m[1][2];
- matInv[2][0] = m[1][0]*m[2][1] - m[1][1]*m[2][0];
- matInv[2][1] = m[0][1]*m[2][0] - m[0][0]*m[2][1];
- matInv[2][2] = m[0][0]*m[1][1] - m[0][1]*m[1][0];
- float det = m[0][0]*matInv[0][0] + m[0][1]*matInv[1][0] + m[0][2]*matInv[2][0];
- if (Math::abs(det) <= tolerance)
- return false;
- float invDet = 1.0f/det;
- for (UINT32 row = 0; row < 3; row++)
- {
- for (UINT32 col = 0; col < 3; col++)
- matInv[row][col] *= invDet;
- }
- return true;
- }
- Matrix3 Matrix3::inverse(float tolerance) const
- {
- Matrix3 matInv = Matrix3::ZERO;
- inverse(matInv, tolerance);
- return matInv;
- }
- float Matrix3::determinant() const
- {
- float cofactor00 = m[1][1]*m[2][2] - m[1][2]*m[2][1];
- float cofactor10 = m[1][2]*m[2][0] - m[1][0]*m[2][2];
- float cofactor20 = m[1][0]*m[2][1] - m[1][1]*m[2][0];
- float det = m[0][0]*cofactor00 + m[0][1]*cofactor10 + m[0][2]*cofactor20;
- return det;
- }
- void Matrix3::bidiagonalize (Matrix3& matA, Matrix3& matL, Matrix3& matR)
- {
- float v[3], w[3];
- float length, sign, t1, invT1, t2;
- bool bIdentity;
- // Map first column to (*,0,0)
- length = Math::sqrt(matA[0][0]*matA[0][0] + matA[1][0]*matA[1][0] + matA[2][0]*matA[2][0]);
- if (length > 0.0f)
- {
- sign = (matA[0][0] > 0.0f ? 1.0f : -1.0f);
- t1 = matA[0][0] + sign*length;
- invT1 = 1.0f/t1;
- v[1] = matA[1][0]*invT1;
- v[2] = matA[2][0]*invT1;
- t2 = -2.0f/(1.0f+v[1]*v[1]+v[2]*v[2]);
- w[0] = t2*(matA[0][0]+matA[1][0]*v[1]+matA[2][0]*v[2]);
- w[1] = t2*(matA[0][1]+matA[1][1]*v[1]+matA[2][1]*v[2]);
- w[2] = t2*(matA[0][2]+matA[1][2]*v[1]+matA[2][2]*v[2]);
- matA[0][0] += w[0];
- matA[0][1] += w[1];
- matA[0][2] += w[2];
- matA[1][1] += v[1]*w[1];
- matA[1][2] += v[1]*w[2];
- matA[2][1] += v[2]*w[1];
- matA[2][2] += v[2]*w[2];
- matL[0][0] = 1.0f+t2;
- matL[0][1] = matL[1][0] = t2*v[1];
- matL[0][2] = matL[2][0] = t2*v[2];
- matL[1][1] = 1.0f+t2*v[1]*v[1];
- matL[1][2] = matL[2][1] = t2*v[1]*v[2];
- matL[2][2] = 1.0f+t2*v[2]*v[2];
- bIdentity = false;
- }
- else
- {
- matL = Matrix3::IDENTITY;
- bIdentity = true;
- }
- // Map first row to (*,*,0)
- length = Math::sqrt(matA[0][1]*matA[0][1]+matA[0][2]*matA[0][2]);
- if ( length > 0.0 )
- {
- sign = (matA[0][1] > 0.0f ? 1.0f : -1.0f);
- t1 = matA[0][1] + sign*length;
- v[2] = matA[0][2]/t1;
- t2 = -2.0f/(1.0f+v[2]*v[2]);
- w[0] = t2*(matA[0][1]+matA[0][2]*v[2]);
- w[1] = t2*(matA[1][1]+matA[1][2]*v[2]);
- w[2] = t2*(matA[2][1]+matA[2][2]*v[2]);
- matA[0][1] += w[0];
- matA[1][1] += w[1];
- matA[1][2] += w[1]*v[2];
- matA[2][1] += w[2];
- matA[2][2] += w[2]*v[2];
- matR[0][0] = 1.0;
- matR[0][1] = matR[1][0] = 0.0;
- matR[0][2] = matR[2][0] = 0.0;
- matR[1][1] = 1.0f+t2;
- matR[1][2] = matR[2][1] = t2*v[2];
- matR[2][2] = 1.0f+t2*v[2]*v[2];
- }
- else
- {
- matR = Matrix3::IDENTITY;
- }
- // Map second column to (*,*,0)
- length = Math::sqrt(matA[1][1]*matA[1][1]+matA[2][1]*matA[2][1]);
- if ( length > 0.0 )
- {
- sign = (matA[1][1] > 0.0f ? 1.0f : -1.0f);
- t1 = matA[1][1] + sign*length;
- v[2] = matA[2][1]/t1;
- t2 = -2.0f/(1.0f+v[2]*v[2]);
- w[1] = t2*(matA[1][1]+matA[2][1]*v[2]);
- w[2] = t2*(matA[1][2]+matA[2][2]*v[2]);
- matA[1][1] += w[1];
- matA[1][2] += w[2];
- matA[2][2] += v[2]*w[2];
- float a = 1.0f+t2;
- float b = t2*v[2];
- float c = 1.0f+b*v[2];
- if (bIdentity)
- {
- matL[0][0] = 1.0;
- matL[0][1] = matL[1][0] = 0.0;
- matL[0][2] = matL[2][0] = 0.0;
- matL[1][1] = a;
- matL[1][2] = matL[2][1] = b;
- matL[2][2] = c;
- }
- else
- {
- for (int row = 0; row < 3; row++)
- {
- float tmp0 = matL[row][1];
- float tmp1 = matL[row][2];
- matL[row][1] = a*tmp0+b*tmp1;
- matL[row][2] = b*tmp0+c*tmp1;
- }
- }
- }
- }
- void Matrix3::golubKahanStep (Matrix3& matA, Matrix3& matL, Matrix3& matR)
- {
- float f11 = matA[0][1]*matA[0][1]+matA[1][1]*matA[1][1];
- float t22 = matA[1][2]*matA[1][2]+matA[2][2]*matA[2][2];
- float t12 = matA[1][1]*matA[1][2];
- float trace = f11+t22;
- float diff = f11-t22;
- float discr = Math::sqrt(diff*diff+4.0f*t12*t12);
- float root1 = 0.5f*(trace+discr);
- float root2 = 0.5f*(trace-discr);
- // Adjust right
- float y = matA[0][0] - (Math::abs(root1-t22) <= Math::abs(root2-t22) ? root1 : root2);
- float z = matA[0][1];
- float invLength = Math::invSqrt(y*y+z*z);
- float sin = z*invLength;
- float cos = -y*invLength;
- float tmp0 = matA[0][0];
- float tmp1 = matA[0][1];
- matA[0][0] = cos*tmp0-sin*tmp1;
- matA[0][1] = sin*tmp0+cos*tmp1;
- matA[1][0] = -sin*matA[1][1];
- matA[1][1] *= cos;
- UINT32 row;
- for (row = 0; row < 3; row++)
- {
- tmp0 = matR[0][row];
- tmp1 = matR[1][row];
- matR[0][row] = cos*tmp0-sin*tmp1;
- matR[1][row] = sin*tmp0+cos*tmp1;
- }
- // Adjust left
- y = matA[0][0];
- z = matA[1][0];
- invLength = Math::invSqrt(y*y+z*z);
- sin = z*invLength;
- cos = -y*invLength;
- matA[0][0] = cos*matA[0][0]-sin*matA[1][0];
- tmp0 = matA[0][1];
- tmp1 = matA[1][1];
- matA[0][1] = cos*tmp0-sin*tmp1;
- matA[1][1] = sin*tmp0+cos*tmp1;
- matA[0][2] = -sin*matA[1][2];
- matA[1][2] *= cos;
- UINT32 col;
- for (col = 0; col < 3; col++)
- {
- tmp0 = matL[col][0];
- tmp1 = matL[col][1];
- matL[col][0] = cos*tmp0-sin*tmp1;
- matL[col][1] = sin*tmp0+cos*tmp1;
- }
- // Adjust right
- y = matA[0][1];
- z = matA[0][2];
- invLength = Math::invSqrt(y*y+z*z);
- sin = z*invLength;
- cos = -y*invLength;
- matA[0][1] = cos*matA[0][1]-sin*matA[0][2];
- tmp0 = matA[1][1];
- tmp1 = matA[1][2];
- matA[1][1] = cos*tmp0-sin*tmp1;
- matA[1][2] = sin*tmp0+cos*tmp1;
- matA[2][1] = -sin*matA[2][2];
- matA[2][2] *= cos;
- for (row = 0; row < 3; row++)
- {
- tmp0 = matR[1][row];
- tmp1 = matR[2][row];
- matR[1][row] = cos*tmp0-sin*tmp1;
- matR[2][row] = sin*tmp0+cos*tmp1;
- }
- // Adjust left
- y = matA[1][1];
- z = matA[2][1];
- invLength = Math::invSqrt(y*y+z*z);
- sin = z*invLength;
- cos = -y*invLength;
- matA[1][1] = cos*matA[1][1]-sin*matA[2][1];
- tmp0 = matA[1][2];
- tmp1 = matA[2][2];
- matA[1][2] = cos*tmp0-sin*tmp1;
- matA[2][2] = sin*tmp0+cos*tmp1;
- for (col = 0; col < 3; col++)
- {
- tmp0 = matL[col][1];
- tmp1 = matL[col][2];
- matL[col][1] = cos*tmp0-sin*tmp1;
- matL[col][2] = sin*tmp0+cos*tmp1;
- }
- }
- void Matrix3::singularValueDecomposition(Matrix3& matL, Vector3& matS, Matrix3& matR) const
- {
- UINT32 row, col;
- Matrix3 mat = *this;
- bidiagonalize(mat, matL, matR);
- for (unsigned int i = 0; i < SVD_MAX_ITERS; i++)
- {
- float tmp, tmp0, tmp1;
- float sin0, cos0, tan0;
- float sin1, cos1, tan1;
- bool test1 = (Math::abs(mat[0][1]) <= SVD_EPSILON*(Math::abs(mat[0][0])+Math::abs(mat[1][1])));
- bool test2 = (Math::abs(mat[1][2]) <= SVD_EPSILON*(Math::abs(mat[1][1])+Math::abs(mat[2][2])));
- if (test1)
- {
- if (test2)
- {
- matS[0] = mat[0][0];
- matS[1] = mat[1][1];
- matS[2] = mat[2][2];
- break;
- }
- else
- {
- // 2x2 closed form factorization
- tmp = (mat[1][1]*mat[1][1] - mat[2][2]*mat[2][2] + mat[1][2]*mat[1][2])/(mat[1][2]*mat[2][2]);
- tan0 = 0.5f*(tmp+Math::sqrt(tmp*tmp + 4.0f));
- cos0 = Math::invSqrt(1.0f+tan0*tan0);
- sin0 = tan0*cos0;
- for (col = 0; col < 3; col++)
- {
- tmp0 = matL[col][1];
- tmp1 = matL[col][2];
- matL[col][1] = cos0*tmp0-sin0*tmp1;
- matL[col][2] = sin0*tmp0+cos0*tmp1;
- }
- tan1 = (mat[1][2]-mat[2][2]*tan0)/mat[1][1];
- cos1 = Math::invSqrt(1.0f+tan1*tan1);
- sin1 = -tan1*cos1;
- for (row = 0; row < 3; row++)
- {
- tmp0 = matR[1][row];
- tmp1 = matR[2][row];
- matR[1][row] = cos1*tmp0-sin1*tmp1;
- matR[2][row] = sin1*tmp0+cos1*tmp1;
- }
- matS[0] = mat[0][0];
- matS[1] = cos0*cos1*mat[1][1] - sin1*(cos0*mat[1][2]-sin0*mat[2][2]);
- matS[2] = sin0*sin1*mat[1][1] + cos1*(sin0*mat[1][2]+cos0*mat[2][2]);
- break;
- }
- }
- else
- {
- if (test2)
- {
- // 2x2 closed form factorization
- tmp = (mat[0][0]*mat[0][0] + mat[1][1]*mat[1][1] - mat[0][1]*mat[0][1])/(mat[0][1]*mat[1][1]);
- tan0 = 0.5f*(-tmp+Math::sqrt(tmp*tmp + 4.0f));
- cos0 = Math::invSqrt(1.0f+tan0*tan0);
- sin0 = tan0*cos0;
- for (col = 0; col < 3; col++)
- {
- tmp0 = matL[col][0];
- tmp1 = matL[col][1];
- matL[col][0] = cos0*tmp0-sin0*tmp1;
- matL[col][1] = sin0*tmp0+cos0*tmp1;
- }
- tan1 = (mat[0][1]-mat[1][1]*tan0)/mat[0][0];
- cos1 = Math::invSqrt(1.0f+tan1*tan1);
- sin1 = -tan1*cos1;
- for (row = 0; row < 3; row++)
- {
- tmp0 = matR[0][row];
- tmp1 = matR[1][row];
- matR[0][row] = cos1*tmp0-sin1*tmp1;
- matR[1][row] = sin1*tmp0+cos1*tmp1;
- }
- matS[0] = cos0*cos1*mat[0][0] - sin1*(cos0*mat[0][1]-sin0*mat[1][1]);
- matS[1] = sin0*sin1*mat[0][0] + cos1*(sin0*mat[0][1]+cos0*mat[1][1]);
- matS[2] = mat[2][2];
- break;
- }
- else
- {
- golubKahanStep(mat, matL, matR);
- }
- }
- }
- // Positize diagonal
- for (row = 0; row < 3; row++)
- {
- if ( matS[row] < 0.0 )
- {
- matS[row] = -matS[row];
- for (col = 0; col < 3; col++)
- matR[row][col] = -matR[row][col];
- }
- }
- }
- void Matrix3::orthonormalize()
- {
- // Compute q0
- float invLength = Math::invSqrt(m[0][0]*m[0][0]+ m[1][0]*m[1][0] + m[2][0]*m[2][0]);
- m[0][0] *= invLength;
- m[1][0] *= invLength;
- m[2][0] *= invLength;
- // Compute q1
- float dot0 = m[0][0]*m[0][1] + m[1][0]*m[1][1] + m[2][0]*m[2][1];
- m[0][1] -= dot0*m[0][0];
- m[1][1] -= dot0*m[1][0];
- m[2][1] -= dot0*m[2][0];
- invLength = Math::invSqrt(m[0][1]*m[0][1] + m[1][1]*m[1][1] + m[2][1]*m[2][1]);
- m[0][1] *= invLength;
- m[1][1] *= invLength;
- m[2][1] *= invLength;
- // Compute q2
- float dot1 = m[0][1]*m[0][2] + m[1][1]*m[1][2] + m[2][1]*m[2][2];
- dot0 = m[0][0]*m[0][2] + m[1][0]*m[1][2] + m[2][0]*m[2][2];
- m[0][2] -= dot0*m[0][0] + dot1*m[0][1];
- m[1][2] -= dot0*m[1][0] + dot1*m[1][1];
- m[2][2] -= dot0*m[2][0] + dot1*m[2][1];
- invLength = Math::invSqrt(m[0][2]*m[0][2] + m[1][2]*m[1][2] + m[2][2]*m[2][2]);
- m[0][2] *= invLength;
- m[1][2] *= invLength;
- m[2][2] *= invLength;
- }
- void Matrix3::QDUDecomposition(Matrix3& matQ, Vector3& vecD, Vector3& vecU) const
- {
- // Build orthogonal matrix Q
- float invLength = Math::invSqrt(m[0][0]*m[0][0] + m[1][0]*m[1][0] + m[2][0]*m[2][0]);
- matQ[0][0] = m[0][0]*invLength;
- matQ[1][0] = m[1][0]*invLength;
- matQ[2][0] = m[2][0]*invLength;
- float dot = matQ[0][0]*m[0][1] + matQ[1][0]*m[1][1] + matQ[2][0]*m[2][1];
- matQ[0][1] = m[0][1]-dot*matQ[0][0];
- matQ[1][1] = m[1][1]-dot*matQ[1][0];
- matQ[2][1] = m[2][1]-dot*matQ[2][0];
- invLength = Math::invSqrt(matQ[0][1]*matQ[0][1] + matQ[1][1]*matQ[1][1] + matQ[2][1]*matQ[2][1]);
- matQ[0][1] *= invLength;
- matQ[1][1] *= invLength;
- matQ[2][1] *= invLength;
- dot = matQ[0][0]*m[0][2] + matQ[1][0]*m[1][2] + matQ[2][0]*m[2][2];
- matQ[0][2] = m[0][2]-dot*matQ[0][0];
- matQ[1][2] = m[1][2]-dot*matQ[1][0];
- matQ[2][2] = m[2][2]-dot*matQ[2][0];
- dot = matQ[0][1]*m[0][2] + matQ[1][1]*m[1][2] + matQ[2][1]*m[2][2];
- matQ[0][2] -= dot*matQ[0][1];
- matQ[1][2] -= dot*matQ[1][1];
- matQ[2][2] -= dot*matQ[2][1];
- invLength = Math::invSqrt(matQ[0][2]*matQ[0][2] + matQ[1][2]*matQ[1][2] + matQ[2][2]*matQ[2][2]);
- matQ[0][2] *= invLength;
- matQ[1][2] *= invLength;
- matQ[2][2] *= invLength;
- // Guarantee that orthogonal matrix has determinant 1 (no reflections)
- float fDet = matQ[0][0]*matQ[1][1]*matQ[2][2] + matQ[0][1]*matQ[1][2]*matQ[2][0] +
- matQ[0][2]*matQ[1][0]*matQ[2][1] - matQ[0][2]*matQ[1][1]*matQ[2][0] -
- matQ[0][1]*matQ[1][0]*matQ[2][2] - matQ[0][0]*matQ[1][2]*matQ[2][1];
- if (fDet < 0.0f)
- {
- for (UINT32 row = 0; row < 3; row++)
- for (UINT32 col = 0; col < 3; col++)
- matQ[row][col] = -matQ[row][col];
- }
- // Build "right" matrix R
- Matrix3 matRight;
- matRight[0][0] = matQ[0][0]*m[0][0] + matQ[1][0]*m[1][0] +
- matQ[2][0]*m[2][0];
- matRight[0][1] = matQ[0][0]*m[0][1] + matQ[1][0]*m[1][1] +
- matQ[2][0]*m[2][1];
- matRight[1][1] = matQ[0][1]*m[0][1] + matQ[1][1]*m[1][1] +
- matQ[2][1]*m[2][1];
- matRight[0][2] = matQ[0][0]*m[0][2] + matQ[1][0]*m[1][2] +
- matQ[2][0]*m[2][2];
- matRight[1][2] = matQ[0][1]*m[0][2] + matQ[1][1]*m[1][2] +
- matQ[2][1]*m[2][2];
- matRight[2][2] = matQ[0][2]*m[0][2] + matQ[1][2]*m[1][2] +
- matQ[2][2]*m[2][2];
- // The scaling component
- vecD[0] = matRight[0][0];
- vecD[1] = matRight[1][1];
- vecD[2] = matRight[2][2];
- // The shear component
- float invD0 = 1.0f/vecD[0];
- vecU[0] = matRight[0][1]*invD0;
- vecU[1] = matRight[0][2]*invD0;
- vecU[2] = matRight[1][2]/vecD[1];
- }
- void Matrix3::toAxisAngle(Vector3& axis, Radian& radians) const
- {
- float trace = m[0][0] + m[1][1] + m[2][2];
- float cos = 0.5f*(trace-1.0f);
- radians = Math::acos(cos); // In [0, PI]
- if (radians > Radian(0.0f))
- {
- if (radians < Radian(Math::PI))
- {
- axis.x = m[2][1]-m[1][2];
- axis.y = m[0][2]-m[2][0];
- axis.z = m[1][0]-m[0][1];
- axis.normalize();
- }
- else
- {
- // Angle is PI
- float fHalfInverse;
- if (m[0][0] >= m[1][1])
- {
- // r00 >= r11
- if (m[0][0] >= m[2][2])
- {
- // r00 is maximum diagonal term
- axis.x = 0.5f*Math::sqrt(m[0][0] - m[1][1] - m[2][2] + 1.0f);
- fHalfInverse = 0.5f/axis.x;
- axis.y = fHalfInverse*m[0][1];
- axis.z = fHalfInverse*m[0][2];
- }
- else
- {
- // r22 is maximum diagonal term
- axis.z = 0.5f*Math::sqrt(m[2][2] - m[0][0] - m[1][1] + 1.0f);
- fHalfInverse = 0.5f/axis.z;
- axis.x = fHalfInverse*m[0][2];
- axis.y = fHalfInverse*m[1][2];
- }
- }
- else
- {
- // r11 > r00
- if ( m[1][1] >= m[2][2] )
- {
- // r11 is maximum diagonal term
- axis.y = 0.5f*Math::sqrt(m[1][1] - m[0][0] - m[2][2] + 1.0f);
- fHalfInverse = 0.5f/axis.y;
- axis.x = fHalfInverse*m[0][1];
- axis.z = fHalfInverse*m[1][2];
- }
- else
- {
- // r22 is maximum diagonal term
- axis.z = 0.5f*Math::sqrt(m[2][2] - m[0][0] - m[1][1] + 1.0f);
- fHalfInverse = 0.5f/axis.z;
- axis.x = fHalfInverse*m[0][2];
- axis.y = fHalfInverse*m[1][2];
- }
- }
- }
- }
- else
- {
- // The angle is 0 and the matrix is the identity. Any axis will
- // work, so just use the x-axis.
- axis.x = 1.0f;
- axis.y = 0.0f;
- axis.z = 0.0f;
- }
- }
- void Matrix3::fromAxisAngle(const Vector3& axis, const Radian& angle)
- {
- float cos = Math::cos(angle);
- float sin = Math::sin(angle);
- float oneMinusCos = 1.0f-cos;
- float x2 = axis.x*axis.x;
- float y2 = axis.y*axis.y;
- float z2 = axis.z*axis.z;
- float xym = axis.x*axis.y*oneMinusCos;
- float xzm = axis.x*axis.z*oneMinusCos;
- float yzm = axis.y*axis.z*oneMinusCos;
- float xSin = axis.x*sin;
- float ySin = axis.y*sin;
- float zSin = axis.z*sin;
- m[0][0] = x2*oneMinusCos+cos;
- m[0][1] = xym-zSin;
- m[0][2] = xzm+ySin;
- m[1][0] = xym+zSin;
- m[1][1] = y2*oneMinusCos+cos;
- m[1][2] = yzm-xSin;
- m[2][0] = xzm-ySin;
- m[2][1] = yzm+xSin;
- m[2][2] = z2*oneMinusCos+cos;
- }
- void Matrix3::toQuaternion(Quaternion& quat) const
- {
- quat.fromRotationMatrix(*this);
- }
- void Matrix3::fromQuaternion(const Quaternion& quat)
- {
- quat.toRotationMatrix(*this);
- }
- bool Matrix3::toEulerAngles(Radian& xAngle, Radian& yAngle, Radian& zAngle) const
- {
- xAngle = -Radian(Math::asin(m[1][2]));
- if (xAngle < Radian(Math::HALF_PI))
- {
- if (xAngle > Radian(-Math::HALF_PI))
- {
- yAngle = Math::atan2(m[0][2], m[2][2]);
- zAngle = Math::atan2(m[1][0], m[1][1]);
- return true;
- }
- else
- {
- // Note: Not an unique solution.
- xAngle = Radian(-Math::HALF_PI);
- yAngle = Math::atan2(-m[0][1], m[0][0]);
- zAngle = Radian(0.0f);
- return false;
- }
- }
- else
- {
- // Note: Not an unique solution.
- xAngle = Radian(Math::HALF_PI);
- yAngle = Math::atan2(m[0][1], m[0][0]);
- zAngle = Radian(0.0f);
-
- return false;
- }
- }
- void Matrix3::fromEulerAngles(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle)
- {
- float cx = Math::cos(xAngle);
- float sx = Math::sin(xAngle);
- float cy = Math::cos(yAngle);
- float sy = Math::sin(yAngle);
- float cz = Math::cos(zAngle);
- float sz = Math::sin(zAngle);
- m[0][0] = cy * cz + sx * sy * sz;
- m[0][1] = cz * sx * sy - cy * sz;
- m[0][2] = cx * sy;
- m[1][0] = cx * sz;
- m[1][1] = cx * cz;
- m[1][2] = -sx;
- m[2][0] = -cz * sy + cy * sx * sz;
- m[2][1] = cy * cz * sx + sy * sz;
- m[2][2] = cx * cy;
- }
- void Matrix3::fromEulerAngles(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle, EulerAngleOrder order)
- {
- const EulerAngleOrderData& l = EA_LOOKUP[(int)order];
- Matrix3 mats[3];
- float cx = Math::cos(xAngle);
- float sx = Math::sin(xAngle);
- mats[0] = Matrix3(
- 1.0f, 0.0f, 0.0f,
- 0.0f, cx, -sx,
- 0.0f, sx, cx);
- float cy = Math::cos(yAngle);
- float sy = Math::sin(yAngle);
- mats[1] = Matrix3(
- cy, 0.0f, sy,
- 0.0f, 1.0f, 0.0f,
- -sy, 0.0f, cy);
- float cz = Math::cos(zAngle);
- float sz = Math::sin(zAngle);
- mats[2] = Matrix3(
- cz, -sz, 0.0f,
- sz, cz, 0.0f,
- 0.0f, 0.0f, 1.0f);
-
- *this = mats[l.a]*(mats[l.b]*mats[l.c]);
- }
- void Matrix3::tridiagonal(float diag[3], float subDiag[3])
- {
- // Householder reduction T = Q^t M Q
- // Input:
- // mat, symmetric 3x3 matrix M
- // Output:
- // mat, orthogonal matrix Q
- // diag, diagonal entries of T
- // subd, subdiagonal entries of T (T is symmetric)
- float fA = m[0][0];
- float fB = m[0][1];
- float fC = m[0][2];
- float fD = m[1][1];
- float fE = m[1][2];
- float fF = m[2][2];
- diag[0] = fA;
- subDiag[2] = 0.0;
- if (Math::abs(fC) >= EPSILON)
- {
- float length = Math::sqrt(fB*fB+fC*fC);
- float invLength = 1.0f/length;
- fB *= invLength;
- fC *= invLength;
- float fQ = 2.0f*fB*fE+fC*(fF-fD);
- diag[1] = fD+fC*fQ;
- diag[2] = fF-fC*fQ;
- subDiag[0] = length;
- subDiag[1] = fE-fB*fQ;
- m[0][0] = 1.0;
- m[0][1] = 0.0;
- m[0][2] = 0.0;
- m[1][0] = 0.0;
- m[1][1] = fB;
- m[1][2] = fC;
- m[2][0] = 0.0;
- m[2][1] = fC;
- m[2][2] = -fB;
- }
- else
- {
- diag[1] = fD;
- diag[2] = fF;
- subDiag[0] = fB;
- subDiag[1] = fE;
- m[0][0] = 1.0;
- m[0][1] = 0.0;
- m[0][2] = 0.0;
- m[1][0] = 0.0;
- m[1][1] = 1.0;
- m[1][2] = 0.0;
- m[2][0] = 0.0;
- m[2][1] = 0.0;
- m[2][2] = 1.0;
- }
- }
- bool Matrix3::QLAlgorithm(float diag[3], float subDiag[3])
- {
- // QL iteration with implicit shifting to reduce matrix from tridiagonal to diagonal
- for (int i = 0; i < 3; i++)
- {
- const unsigned int maxIter = 32;
- unsigned int iter;
- for (iter = 0; iter < maxIter; iter++)
- {
- int j;
- for (j = i; j <= 1; j++)
- {
- float sum = Math::abs(diag[j]) + Math::abs(diag[j+1]);
- if (Math::abs(subDiag[j]) + sum == sum)
- break;
- }
- if (j == i)
- break;
- float tmp0 = (diag[i+1]-diag[i])/(2.0f*subDiag[i]);
- float tmp1 = Math::sqrt(tmp0*tmp0+1.0f);
- if (tmp0 < 0.0f)
- tmp0 = diag[j]-diag[i]+subDiag[i]/(tmp0-tmp1);
- else
- tmp0 = diag[j]-diag[i]+subDiag[i]/(tmp0+tmp1);
- float sin = 1.0f;
- float cos = 1.0f;
- float tmp2 = 0.0f;
- for (int k = j-1; k >= i; k--)
- {
- float tmp3 = sin*subDiag[k];
- float tmp4 = cos*subDiag[k];
- if (Math::abs(tmp3) >= Math::abs(tmp0))
- {
- cos = tmp0/tmp3;
- tmp1 = Math::sqrt(cos*cos+1.0f);
- subDiag[k+1] = tmp3*tmp1;
- sin = 1.0f/tmp1;
- cos *= sin;
- }
- else
- {
- sin = tmp3/tmp0;
- tmp1 = Math::sqrt(sin*sin+1.0f);
- subDiag[k+1] = tmp0*tmp1;
- cos = 1.0f/tmp1;
- sin *= cos;
- }
- tmp0 = diag[k+1]-tmp2;
- tmp1 = (diag[k]-tmp0)*sin+2.0f*tmp4*cos;
- tmp2 = sin*tmp1;
- diag[k+1] = tmp0+tmp2;
- tmp0 = cos*tmp1-tmp4;
- for (int row = 0; row < 3; row++)
- {
- tmp3 = m[row][k+1];
- m[row][k+1] = sin*m[row][k] + cos*tmp3;
- m[row][k] = cos*m[row][k] - sin*tmp3;
- }
- }
- diag[i] -= tmp2;
- subDiag[i] = tmp0;
- subDiag[j] = 0.0;
- }
- if (iter == maxIter)
- {
- // Should not get here under normal circumstances
- return false;
- }
- }
- return true;
- }
- void Matrix3::eigenSolveSymmetric(float eigenValues[3], Vector3 eigenVectors[3]) const
- {
- Matrix3 mat = *this;
- float subDiag[3];
- mat.tridiagonal(eigenValues, subDiag);
- mat.QLAlgorithm(eigenValues, subDiag);
- for (UINT32 i = 0; i < 3; i++)
- {
- eigenVectors[i][0] = mat[0][i];
- eigenVectors[i][1] = mat[1][i];
- eigenVectors[i][2] = mat[2][i];
- }
- // Make eigenvectors form a right--handed system
- Vector3 cross = eigenVectors[1].cross(eigenVectors[2]);
- float det = eigenVectors[0].dot(cross);
- if (det < 0.0f)
- {
- eigenVectors[2][0] = -eigenVectors[2][0];
- eigenVectors[2][1] = -eigenVectors[2][1];
- eigenVectors[2][2] = -eigenVectors[2][2];
- }
- }
- }
|