| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759 |
- //********************************** Banshee Engine (www.banshee3d.com) **************************************************//
- //**************** Copyright (c) 2016 Marko Pintera ([email protected]). All rights reserved. **********************//
- #pragma once
- #include "Prerequisites/BsPrerequisitesUtil.h"
- #include "Math/BsDegree.h"
- #include "Math/BsRadian.h"
- #include "Math/BsVector3.h"
- namespace bs
- {
- /** @addtogroup Math
- * @{
- */
- /** Utility class providing common scalar math operations. */
- class BS_UTILITY_EXPORT Math
- {
- public:
- /** Inverse cosine. */
- static Radian acos(float val);
- /** Inverse sine. */
- static Radian asin(float val);
- /** Inverse tangent. */
- static Radian atan(float val) { return Radian(std::atan(val)); }
- /** Inverse tangent with two arguments, returns angle between the X axis and the point. */
- static Radian atan2(float y, float x) { return Radian(std::atan2(y,x)); }
- /** Cosine. */
- static float cos(const Radian& val) { return (float)std::cos(val.valueRadians()); }
- /** Cosine. */
- static float cos(float val) { return (float)std::cos(val); }
- /** Sine. */
- static float sin(const Radian& val) { return (float)std::sin(val.valueRadians()); }
- /** Sine. */
- static float sin(float val) { return (float)std::sin(val); }
- /** Tangent. */
- static float tan(const Radian& val) { return (float)std::tan(val.valueRadians()); }
- /** Tangent. */
- static float tan(float val) { return (float)std::tan(val); }
- /** Square root. */
- static float sqrt(float val) { return (float)std::sqrt(val); }
- /** Square root. */
- static Radian sqrt(const Radian& val) { return Radian(std::sqrt(val.valueRadians())); }
- /** Square root. */
- static Degree sqrt(const Degree& val) { return Degree(std::sqrt(val.valueDegrees())); }
- /** Square root followed by an inverse. */
- static float invSqrt(float val);
- /** Returns square of the provided value. */
- static float sqr(float val) { return val*val; }
- /** Returns base raised to the provided power. */
- static float pow(float base, float exponent) { return (float)std::pow(base, exponent); }
- /** Returns euler number (e) raised to the provided power. */
- static float exp(float val) { return (float)std::exp(val); }
- /** Returns natural (base e) logarithm of the provided value. */
- static float log(float val) { return (float)std::log(val); }
- /** Returns base 2 logarithm of the provided value. */
- static float log2(float val) { return (float)(std::log(val)/LOG2); }
- /** Returns base N logarithm of the provided value. */
- static float logN(float base, float val) { return (float)(std::log(val)/std::log(base)); }
- /** Returns the sign of the provided value as 1 or -1. */
- static float sign(float val);
- /** Returns the sign of the provided value as 1 or -1. */
- static Radian sign(const Radian& val) { return Radian(sign(val.valueRadians())); }
- /** Returns the sign of the provided value as 1 or -1. */
- static Degree sign(const Degree& val) { return Degree(sign(val.valueDegrees())); }
- /** Returns the absolute value. */
- static float abs(float val) { return float(std::fabs(val)); }
- /** Returns the absolute value. */
- static Degree abs(const Degree& val) { return Degree(std::fabs(val.valueDegrees())); }
- /** Returns the absolute value. */
- static Radian abs(const Radian& val) { return Radian(std::fabs(val.valueRadians())); }
- /** Returns the nearest integer equal or higher to the provided value. */
- static float ceil(float val) { return (float)std::ceil(val); }
- /** Returns the nearest integer equal or higher to the provided value. */
- static int ceilToInt(float val) { return (int)std::ceil(val); }
- /** Returns the integer nearest to the provided value. */
- static float round(float val) { return (float)std::floor(val + 0.5f); }
- /** Returns the integer nearest to the provided value. */
- static int roundToInt(float val) { return (int)std::floor(val + 0.5f); }
- /**
- * Divides an integer by another integer and returns the result, rounded up. Only works if both integers are
- * positive.
- */
- template<class T>
- static constexpr T divideAndRoundUp(T n, T d) { return (n + d - 1) / d; }
- /** Returns the nearest integer equal or lower of the provided value. */
- static float floor(float val) { return (float)std::floor(val); }
- /** Returns the nearest integer equal or lower of the provided value. */
- static int floorToInt(float val) { return (int)std::floor(val); }
- /** Clamp a value within an inclusive range. */
- template <typename T>
- static T clamp(T val, T minval, T maxval)
- {
- assert (minval <= maxval && "Invalid clamp range");
- return std::max(std::min(val, maxval), minval);
- }
- /** Clamp a value within an inclusive range [0..1]. */
- template <typename T>
- static T clamp01(T val)
- {
- return std::max(std::min(val, (T)1), (T)0);
- }
- /** Checks if the value is a valid number. */
- static bool isNaN(float f)
- {
- return f != f;
- }
- /** Compare two floats, using tolerance for inaccuracies. */
- static bool approxEquals(float a, float b,
- float tolerance = std::numeric_limits<float>::epsilon())
- {
- return fabs(b - a) <= tolerance;
- }
- /** Compare two doubles, using tolerance for inaccuracies. */
- static bool approxEquals(double a, double b,
- double tolerance = std::numeric_limits<double>::epsilon())
- {
- return fabs(b - a) <= tolerance;
- }
- /** Compare two 2D vectors, using tolerance for inaccuracies. */
- static bool approxEquals(const Vector2& a, const Vector2& b,
- float tolerance = std::numeric_limits<float>::epsilon());
- /** Compare two 3D vectors, using tolerance for inaccuracies. */
- static bool approxEquals(const Vector3& a, const Vector3& b,
- float tolerance = std::numeric_limits<float>::epsilon());
- /** Compare two 4D vectors, using tolerance for inaccuracies. */
- static bool approxEquals(const Vector4& a, const Vector4& b,
- float tolerance = std::numeric_limits<float>::epsilon());
- /** Compare two quaternions, using tolerance for inaccuracies. */
- static bool approxEquals(const Quaternion& a, const Quaternion& b,
- float tolerance = std::numeric_limits<float>::epsilon());
- /** Calculates the tangent space vector for a given set of positions / texture coords. */
- static Vector3 calculateTriTangent(const Vector3& position1, const Vector3& position2,
- const Vector3& position3, float u1, float v1, float u2, float v2, float u3, float v3);
- /************************************************************************/
- /* TRIG APPROXIMATIONS */
- /************************************************************************/
- /**
- * Sine function approximation.
- *
- * @param[in] val Angle in range [0, pi/2].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- */
- static float fastSin0(const Radian& val) { return (float)fastASin0(val.valueRadians()); }
- /**
- * Sine function approximation.
- *
- * @param[in] val Angle in range [0, pi/2].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- */
- static float fastSin0(float val);
- /**
- * Sine function approximation.
- *
- * @param[in] val Angle in range [0, pi/2].
- *
- * @note
- * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastSin0.
- */
- static float fastSin1(const Radian& val) { return (float)fastASin1(val.valueRadians()); }
- /**
- * Sine function approximation.
- *
- * @param[in] val Angle in range [0, pi/2].
- *
- * @note
- * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastSin0.
- */
- static float fastSin1(float val);
- /**
- * Cosine function approximation.
- *
- * @param[in] val Angle in range [0, pi/2].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- */
- static float fastCos0(const Radian& val) { return (float)fastACos0(val.valueRadians()); }
- /**
- * Cosine function approximation.
- *
- * @param[in] val Angle in range [0, pi/2].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- */
- static float fastCos0(float val);
- /**
- * Cosine function approximation.
- *
- * @param[in] val Angle in range [0, pi/2].
- *
- * @note
- * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastCos0.
- */
- static float fastCos1(const Radian& val) { return (float)fastACos1(val.valueRadians()); }
- /**
- * Cosine function approximation.
- *
- * @param[in] val Angle in range [0, pi/2].
- *
- * @note
- * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastCos0.
- */
- static float fastCos1(float val);
- /**
- * Tangent function approximation.
- *
- * @param[in] val Angle in range [0, pi/4].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- */
- static float fastTan0(const Radian& val) { return (float)fastATan0(val.valueRadians()); }
- /**
- * Tangent function approximation.
- *
- * @param[in] val Angle in range [0, pi/4].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- */
- static float fastTan0(float val);
- /**
- * Tangent function approximation.
- *
- * @param[in] val Angle in range [0, pi/4].
- *
- * @note
- * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastTan0.
- */
- static float fastTan1(const Radian& val) { return (float)fastATan1(val.valueRadians()); }
- /**
- * Tangent function approximation.
- *
- * @param[in] val Angle in range [0, pi/4].
- *
- * @note
- * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastTan0.
- */
- static float fastTan1(float val);
- /**
- * Inverse sine function approximation.
- *
- * @param[in] val Angle in range [0, 1].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- */
- static float fastASin0(const Radian& val) { return (float)fastASin0(val.valueRadians()); }
- /**
- * Inverse sine function approximation.
- *
- * @param[in] val Angle in range [0, 1].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- */
- static float fastASin0(float val);
- /**
- * Inverse sine function approximation.
- *
- * @param[in] val Angle in range [0, 1].
- *
- * @note
- * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastASin0.
- */
- static float fastASin1(const Radian& val) { return (float)fastASin1(val.valueRadians()); }
- /**
- * Inverse sine function approximation.
- *
- * @param[in] val Angle in range [0, 1].
- *
- * @note
- * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastASin0.
- */
- static float fastASin1(float val);
- /**
- * Inverse cosine function approximation.
- *
- * @param[in] val Angle in range [0, 1].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- */
- static float fastACos0(const Radian& val) { return (float)fastACos0(val.valueRadians()); }
- /**
- * Inverse cosine function approximation.
- *
- * @param[in] val Angle in range [0, 1].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- */
- static float fastACos0(float val);
- /**
- * Inverse cosine function approximation.
- *
- * @param[in] val Angle in range [0, 1].
- *
- * @note
- * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastACos0.
- */
- static float fastACos1(const Radian& val) { return (float)fastACos1(val.valueRadians()); }
- /**
- * Inverse cosine function approximation.
- *
- * @param[in] val Angle in range [0, 1].
- *
- * @note
- * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastACos0.
- */
- static float fastACos1(float val);
- /**
- * Inverse tangent function approximation.
- *
- * @param[in] val Angle in range [-1, 1].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- */
- static float fastATan0(const Radian& val) { return (float)fastATan0(val.valueRadians()); }
- /**
- * Inverse tangent function approximation.
- *
- * @param[in] val Angle in range [-1, 1].
- *
- * @note Evaluates trigonometric functions using polynomial approximations.
- */
- static float fastATan0(float val);
- /**
- * Inverse tangent function approximation.
- *
- * @param[in] val Angle in range [-1, 1].
- *
- * @note
- * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastATan0.
- */
- static float fastATan1(const Radian& val) { return (float)fastATan1(val.valueRadians()); }
- /**
- * Inverse tangent function approximation.
- *
- * @param[in] val Angle in range [-1, 1].
- *
- * @note
- * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastATan0.
- */
- static float fastATan1(float val);
- /**
- * Interpolates between min and max. Returned value is in [0, 1] range where min = 0, max = 1 and 0.5 is
- * the average of min and max.
- */
- template <typename T>
- static float lerp01(T val, T min, T max)
- {
- return clamp01((val - min) / std::max(max - min, 0.0001F));
- }
- /**
- * Solves the linear equation with the parameters A, B. Returns number of roots found and the roots themselves will
- * be output in the @p roots array.
- *
- * @param[in] A First variable.
- * @param[in] B Second variable.
- * @param[out] roots Must be at least size of 1.
- *
- * @note Only returns real roots.
- */
- template <typename T>
- static UINT32 solveLinear(T A, T B, T* roots)
- {
- if (!approxEquals(A, (T)0))
- {
- roots[0] = -B / A;
- return 1;
- }
- roots[0] = 0.0f;
- return 1;
- }
- /**
- * Solves the quadratic equation with the parameters A, B, C. Returns number of roots found and the roots themselves
- * will be output in the @p roots array.
- *
- * @param[in] A First variable.
- * @param[in] B Second variable.
- * @param[in] C Third variable.
- * @param[out] roots Must be at least size of 2.
- *
- * @note Only returns real roots.
- */
- template <typename T>
- static UINT32 solveQuadratic(T A, T B, T C, T* roots)
- {
- if (!approxEquals(A, (T)0))
- {
- T p = B / (2 * A);
- T q = C / A;
- T D = p * p - q;
- if (!approxEquals(D, (T)0))
- {
- if (D < (T)0)
- return 0;
-
- T sqrtD = sqrt(D);
- roots[0] = sqrtD - p;
- roots[1] = -sqrtD - p;
- return 2;
- }
- else
- {
- roots[0] = -p;
- roots[1] = -p;
- return 1;
- }
- }
- else
- {
- return solveLinear(B, C, roots);
- }
- }
- /**
- * Solves the cubic equation with the parameters A, B, C, D. Returns number of roots found and the roots themselves
- * will be output in the @p roots array.
- *
- * @param[in] A First variable.
- * @param[in] B Second variable.
- * @param[in] C Third variable.
- * @param[in] D Fourth variable.
- * @param[out] roots Must be at least size of 3.
- *
- * @note Only returns real roots.
- */
- template <typename T>
- static UINT32 solveCubic(T A, T B, T C, T D, T* roots)
- {
- static const T THIRD = (1 / (T)3);
- T invA = 1 / A;
- A = B * invA;
- B = C * invA;
- C = D * invA;
- T sqA = A * A;
- T p = THIRD * (-THIRD * sqA + B);
- T q = ((T)0.5) * ((2 / (T)27) * A * sqA - THIRD * A * B + C);
- T cbp = p * p * p;
- D = q * q + cbp;
- UINT32 numRoots = 0;
- if (!approxEquals(D, (T)0))
- {
- if (D < 0.0)
- {
- T phi = THIRD * ::acos(-q / sqrt(-cbp));
- T t = 2 * sqrt(-p);
- roots[0] = t * cos(phi);
- roots[1] = -t * cos(phi + PI * THIRD);
- roots[2] = -t * cos(phi - PI * THIRD);
- numRoots = 3;
- }
- else
- {
- T sqrtD = sqrt(D);
- T u = cbrt(sqrtD + fabs(q));
- if (q > (T)0)
- roots[0] = -u + p / u;
- else
- roots[0] = u - p / u;
- numRoots = 1;
- }
- }
- else
- {
- if (!approxEquals(q, (T)0))
- {
- T u = cbrt(-q);
- roots[0] = 2 * u;
- roots[1] = -u;
- numRoots = 2;
- }
- else
- {
- roots[0] = 0.0f;
- numRoots = 1;
- }
- }
- T sub = THIRD * A;
- for (UINT32 i = 0; i < numRoots; i++)
- roots[i] -= sub;
- return numRoots;
- }
- /**
- * Solves the quartic equation with the parameters A, B, C, D, E. Returns number of roots found and the roots
- * themselves will be output in the @p roots array.
- *
- * @param[in] A First variable.
- * @param[in] B Second variable.
- * @param[in] C Third variable.
- * @param[in] D Fourth variable.
- * @param[in] E Fifth variable.
- * @param[out] roots Must be at least size of 4.
- *
- * @note Only returns real roots.
- */
- template <typename T>
- static UINT32 solveQuartic(T A, T B, T C, T D, T E, T* roots)
- {
- T invA = 1 / A;
- A = B * invA;
- B = C * invA;
- C = D * invA;
- D = E * invA;
- T sqA = A*A;
- T p = -(3 / (T)8) * sqA + B;
- T q = (1 / (T)8) * sqA * A - (T)0.5 * A * B + C;
- T r = -(3 / (T)256) * sqA * sqA + (1 / (T)16) * sqA * B - (1 / (T)4) * A * C + D;
- UINT32 numRoots = 0;
- if (!approxEquals(r, (T)0))
- {
- T cubicA = 1;
- T cubicB = -(T)0.5 * p ;
- T cubicC = -r;
- T cubicD = (T)0.5 * r * p - (1 / (T)8) * q * q;
- solveCubic(cubicA, cubicB, cubicC, cubicD, roots);
- T z = roots[0];
- T u = z * z - r;
- T v = 2 * z - p;
- if (approxEquals(u, T(0)))
- u = 0;
- else if (u > 0)
- u = sqrt(u);
- else
- return 0;
- if (approxEquals(v, T(0)))
- v = 0;
- else if (v > 0)
- v = sqrt(v);
- else
- return 0;
- T quadraticA = 1;
- T quadraticB = q < 0 ? -v : v;
- T quadraticC = z - u;
- numRoots = solveQuadratic(quadraticA, quadraticB, quadraticC, roots);
- quadraticA = 1;
- quadraticB = q < 0 ? v : -v;
- quadraticC = z + u;
- numRoots += solveQuadratic(quadraticA, quadraticB, quadraticC, roots + numRoots);
- }
- else
- {
- numRoots = solveCubic(q, p, (T)0, (T)1, roots);
- roots[numRoots++] = 0;
- }
- T sub = (1/(T)4) * A;
- for (UINT32 i = 0; i < numRoots; i++)
- roots[i] -= sub;
- return numRoots;
- }
- /**
- * Evaluates a cubic Hermite curve at a specific point.
- *
- * @param[in] t Parameter that at which to evaluate the curve, in range [0, 1].
- * @param[in] pointA Starting point (at t=0).
- * @param[in] pointB Ending point (at t=1).
- * @param[in] tangentA Starting tangent (at t=0).
- * @param[in] tangentB Ending tangent (at t = 1).
- * @return Evaluated value at @p t.
- */
- template<class T>
- static T cubicHermite(float t, const T& pointA, const T& pointB, const T& tangentA, const T& tangentB)
- {
- float t2 = t * t;
- float t3 = t2 * t;
- float a = 2 * t3 - 3 * t2 + 1;
- float b = t3 - 2 * t2 + t;
- float c = -2 * t3 + 3 * t2;
- float d = t3 - t2;
- return a * pointA + b * tangentA + c * pointB + d * tangentB;
- }
- /**
- * Evaluates the first derivative of a cubic Hermite curve at a specific point.
- *
- * @param[in] t Parameter that at which to evaluate the curve, in range [0, 1].
- * @param[in] pointA Starting point (at t=0).
- * @param[in] pointB Ending point (at t=1).
- * @param[in] tangentA Starting tangent (at t=0).
- * @param[in] tangentB Ending tangent (at t = 1).
- * @return Evaluated value at @p t.
- */
- template<class T>
- static T cubicHermiteD1(float t, const T& pointA, const T& pointB, const T& tangentA, const T& tangentB)
- {
- float t2 = t * t;
- float a = 6 * t2 - 6 * t;
- float b = 3 * t2 - 4 * t + 1;
- float c = -6 * t2 + 6 * t;
- float d = 3 * t2 - 2 * t;
- return a * pointA + b * tangentA + c * pointB + d * tangentB;
- }
- /**
- * Calculates coefficients needed for evaluating a cubic curve in Hermite form. Assumes @p t has been normalized is
- * in range [0, 1]. Tangents must be scaled by the length of the curve (length is the maximum value of @p t before
- * it was normalized).
- *
- * @param[in] pointA Starting point (at t=0).
- * @param[in] pointB Ending point (at t=1).
- * @param[in] tangentA Starting tangent (at t=0).
- * @param[in] tangentB Ending tangent (at t = 1).
- * @param[out] coefficients Four coefficients for the cubic curve, in order [t^3, t^2, t, 1].
- */
- template<class T>
- static void cubicHermiteCoefficients(const T& pointA, const T& pointB, const T& tangentA, const T& tangentB,
- T (&coefficients)[4])
- {
- T diff = pointA - pointB;
- coefficients[0] = 2 * diff + tangentA + tangentB;
- coefficients[1] = -3 * diff - 2 * tangentA - tangentB;
- coefficients[2] = tangentA;
- coefficients[3] = pointA;
- }
- /**
- * Calculates coefficients needed for evaluating a cubic curve in Hermite form. Assumes @p t is in range
- * [0, @p length]. Tangents must not be scaled by @p length.
- *
- * @param[in] pointA Starting point (at t=0).
- * @param[in] pointB Ending point (at t=length).
- * @param[in] tangentA Starting tangent (at t=0).
- * @param[in] tangentB Ending tangent (at t=length).
- * @param[in] length Maximum value the curve will be evaluated at.
- * @param[out] coefficients Four coefficients for the cubic curve, in order [t^3, t^2, t, 1].
- */
- template<class T>
- static void cubicHermiteCoefficients(const T& pointA, const T& pointB, const T& tangentA, const T& tangentB,
- float length, T (&coefficients)[4])
- {
- float length2 = length * length;
- float invLength2 = 1.0f / length2;
- float invLength3 = 1.0f / (length2 * length);
- T scaledTangentA = tangentA * length;
- T scaledTangentB = tangentB * length;
- T diff = pointA - pointB;
- coefficients[0] = (2 * diff + scaledTangentA + scaledTangentB) * invLength3;
- coefficients[1] = (-3 * diff - 2 * scaledTangentA - scaledTangentB) * invLength2;
- coefficients[2] = tangentA;
- coefficients[3] = pointA;
- }
- static constexpr float POS_INFINITY = std::numeric_limits<float>::infinity();
- static constexpr float NEG_INFINITY = -std::numeric_limits<float>::infinity();
- static constexpr float PI = 3.14159265358979323846f;
- static constexpr float TWO_PI = (float)(2.0f * PI);
- static constexpr float HALF_PI = (float)(0.5f * PI);
- static constexpr float DEG2RAD = PI / 180.0f;
- static constexpr float RAD2DEG = 180.0f / PI;
- static const float LOG2;
- };
- /** @} */
- }
|