BsPhysX.cpp 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061
  1. #include "BsPhysX.h"
  2. #include "PxPhysicsAPI.h"
  3. #include "BsPhysXMaterial.h"
  4. #include "BsPhysXMesh.h"
  5. #include "BsPhysXRigidbody.h"
  6. #include "BsPhysXBoxCollider.h"
  7. #include "BsPhysXSphereCollider.h"
  8. #include "BsPhysXPlaneCollider.h"
  9. #include "BsPhysXCapsuleCollider.h"
  10. #include "BsPhysXMeshCollider.h"
  11. #include "BsPhysXFixedJoint.h"
  12. #include "BsPhysXDistanceJoint.h"
  13. #include "BsPhysXHingeJoint.h"
  14. #include "BsPhysXSphericalJoint.h"
  15. #include "BsPhysXSliderJoint.h"
  16. #include "BsPhysXD6Joint.h"
  17. #include "BsPhysXCharacterController.h"
  18. #include "BsTaskScheduler.h"
  19. #include "BsCCollider.h"
  20. #include "BsTime.h"
  21. #include "Bsvector3.h"
  22. #include "BsAABox.h"
  23. #include "BsCapsule.h"
  24. #include "foundation\PxTransform.h"
  25. using namespace physx;
  26. namespace BansheeEngine
  27. {
  28. class PhysXAllocator : public PxAllocatorCallback
  29. {
  30. public:
  31. void* allocate(size_t size, const char*, const char*, int) override
  32. {
  33. void* ptr = bs_alloc_aligned16((UINT32)size);
  34. PX_ASSERT((reinterpret_cast<size_t>(ptr) & 15) == 0);
  35. return ptr;
  36. }
  37. void deallocate(void* ptr) override
  38. {
  39. bs_free_aligned16(ptr);
  40. }
  41. };
  42. class PhysXErrorCallback : public PxErrorCallback
  43. {
  44. public:
  45. void reportError(PxErrorCode::Enum code, const char* message, const char* file, int line) override
  46. {
  47. {
  48. const char* errorCode = nullptr;
  49. UINT32 severity = 0;
  50. switch (code)
  51. {
  52. case PxErrorCode::eNO_ERROR:
  53. errorCode = "No error";
  54. break;
  55. case PxErrorCode::eINVALID_PARAMETER:
  56. errorCode = "Invalid parameter";
  57. severity = 2;
  58. break;
  59. case PxErrorCode::eINVALID_OPERATION:
  60. errorCode = "Invalid operation";
  61. severity = 2;
  62. break;
  63. case PxErrorCode::eOUT_OF_MEMORY:
  64. errorCode = "Out of memory";
  65. severity = 2;
  66. break;
  67. case PxErrorCode::eDEBUG_INFO:
  68. errorCode = "Info";
  69. break;
  70. case PxErrorCode::eDEBUG_WARNING:
  71. errorCode = "Warning";
  72. severity = 1;
  73. break;
  74. case PxErrorCode::ePERF_WARNING:
  75. errorCode = "Performance warning";
  76. severity = 1;
  77. break;
  78. case PxErrorCode::eABORT:
  79. errorCode = "Abort";
  80. severity = 2;
  81. break;
  82. case PxErrorCode::eINTERNAL_ERROR:
  83. errorCode = "Internal error";
  84. severity = 2;
  85. break;
  86. case PxErrorCode::eMASK_ALL:
  87. default:
  88. errorCode = "Unknown error";
  89. severity = 2;
  90. break;
  91. }
  92. StringStream ss;
  93. switch(severity)
  94. {
  95. case 0:
  96. ss << "PhysX info (" << errorCode << "): " << message << " at " << file << ":" << line;
  97. LOGDBG(ss.str());
  98. break;
  99. case 1:
  100. ss << "PhysX warning (" << errorCode << "): " << message << " at " << file << ":" << line;
  101. LOGWRN(ss.str());
  102. break;
  103. case 2:
  104. ss << "PhysX error (" << errorCode << "): " << message << " at " << file << ":" << line;
  105. LOGERR(ss.str());
  106. BS_ASSERT(false); // Halt execution on debug builds when error occurrs
  107. break;
  108. }
  109. }
  110. }
  111. };
  112. class PhysXEventCallback : public PxSimulationEventCallback
  113. {
  114. void onWake(PxActor** actors, PxU32 count) override { /* Do nothing */ }
  115. void onSleep(PxActor** actors, PxU32 count) override { /* Do nothing */ }
  116. void onTrigger(PxTriggerPair* pairs, PxU32 count) override
  117. {
  118. for (PxU32 i = 0; i < count; i++)
  119. {
  120. const PxTriggerPair& pair = pairs[i];
  121. PhysX::ContactEventType type;
  122. bool ignoreContact = false;
  123. switch ((UINT32)pair.status)
  124. {
  125. case PxPairFlag::eNOTIFY_TOUCH_FOUND:
  126. type = PhysX::ContactEventType::ContactBegin;
  127. break;
  128. case PxPairFlag::eNOTIFY_TOUCH_PERSISTS:
  129. type = PhysX::ContactEventType::ContactStay;
  130. break;
  131. case PxPairFlag::eNOTIFY_TOUCH_LOST:
  132. type = PhysX::ContactEventType::ContactEnd;
  133. break;
  134. default:
  135. ignoreContact = true;
  136. break;
  137. }
  138. if (ignoreContact)
  139. continue;
  140. PhysX::TriggerEvent event;
  141. event.trigger = (Collider*)pair.triggerShape->userData;
  142. event.other = (Collider*)pair.otherShape->userData;
  143. event.type = type;
  144. gPhysX()._reportTriggerEvent(event);
  145. }
  146. }
  147. void onContact(const PxContactPairHeader& pairHeader, const PxContactPair* pairs, PxU32 count) override
  148. {
  149. for (PxU32 i = 0; i < count; i++)
  150. {
  151. const PxContactPair& pair = pairs[i];
  152. PhysX::ContactEventType type;
  153. bool ignoreContact = false;
  154. switch((UINT32)pair.events)
  155. {
  156. case PxPairFlag::eNOTIFY_TOUCH_FOUND:
  157. type = PhysX::ContactEventType::ContactBegin;
  158. break;
  159. case PxPairFlag::eNOTIFY_TOUCH_PERSISTS:
  160. type = PhysX::ContactEventType::ContactStay;
  161. break;
  162. case PxPairFlag::eNOTIFY_TOUCH_LOST:
  163. type = PhysX::ContactEventType::ContactEnd;
  164. break;
  165. default:
  166. ignoreContact = true;
  167. break;
  168. }
  169. if (ignoreContact)
  170. continue;
  171. PhysX::ContactEvent event;
  172. event.colliderA = (Collider*)pair.shapes[0]->userData;
  173. event.colliderB = (Collider*)pair.shapes[1]->userData;
  174. event.type = type;
  175. PxU32 contactCount = pair.contactCount;
  176. const PxU8* stream = pair.contactStream;
  177. PxU16 streamSize = pair.contactStreamSize;
  178. if (contactCount > 0 && streamSize > 0)
  179. {
  180. PxU32 contactIdx = 0;
  181. PxContactStreamIterator iter((PxU8*)stream, streamSize);
  182. stream += ((streamSize + 15) & ~15);
  183. const PxReal* impulses = reinterpret_cast<const PxReal*>(stream);
  184. PxU32 hasImpulses = (pair.flags & PxContactPairFlag::eINTERNAL_HAS_IMPULSES);
  185. while (iter.hasNextPatch())
  186. {
  187. iter.nextPatch();
  188. while (iter.hasNextContact())
  189. {
  190. iter.nextContact();
  191. ContactPoint point;
  192. point.position = fromPxVector(iter.getContactPoint());
  193. point.separation = iter.getSeparation();
  194. point.normal = fromPxVector(iter.getContactNormal());
  195. if (hasImpulses)
  196. point.impulse = impulses[contactIdx];
  197. else
  198. point.impulse = 0.0f;
  199. event.points.push_back(point);
  200. contactIdx++;
  201. }
  202. }
  203. }
  204. gPhysX()._reportContactEvent(event);
  205. }
  206. }
  207. void onConstraintBreak(PxConstraintInfo* constraints, PxU32 count) override
  208. {
  209. for (UINT32 i = 0; i < count; i++)
  210. {
  211. PxConstraintInfo& constraintInfo = constraints[i];
  212. if (constraintInfo.type != PxConstraintExtIDs::eJOINT)
  213. continue;
  214. PxJoint* pxJoint = (PxJoint*)constraintInfo.externalReference;
  215. Joint* joint = (Joint*)pxJoint->userData;
  216. }
  217. }
  218. };
  219. class PhysXCPUDispatcher : public PxCpuDispatcher
  220. {
  221. public:
  222. void submitTask(PxBaseTask& physxTask) override
  223. {
  224. // Note: Banshee's task scheduler is pretty low granularity. Consider a better task manager in case PhysX ends
  225. // up submitting many tasks.
  226. // - PhysX's task manager doesn't seem much lighter either. But perhaps I can at least create a task pool to
  227. // avoid allocating them constantly.
  228. auto runTask = [&]() { physxTask.run(); physxTask.release(); };
  229. TaskPtr task = Task::create("PhysX", runTask);
  230. TaskScheduler::instance().addTask(task);
  231. }
  232. PxU32 getWorkerCount() const override
  233. {
  234. return (PxU32)TaskScheduler::instance().getNumWorkers();
  235. }
  236. };
  237. class PhysXBroadPhaseCallback : public PxBroadPhaseCallback
  238. {
  239. void onObjectOutOfBounds(PxShape& shape, PxActor& actor) override
  240. {
  241. Collider* collider = (Collider*)shape.userData;
  242. if (collider != nullptr)
  243. LOGWRN("Physics object out of bounds. Consider increasing broadphase region!");
  244. }
  245. void onObjectOutOfBounds(PxAggregate& aggregate) override { /* Do nothing */ }
  246. };
  247. PxFilterFlags PhysXFilterShader(PxFilterObjectAttributes attr0, PxFilterData data0, PxFilterObjectAttributes attr1,
  248. PxFilterData data1, PxPairFlags& pairFlags, const void* constantBlock, PxU32 constantBlockSize)
  249. {
  250. if (PxFilterObjectIsTrigger(attr0) || PxFilterObjectIsTrigger(attr1))
  251. {
  252. pairFlags = PxPairFlag::eTRIGGER_DEFAULT;
  253. return PxFilterFlags();
  254. }
  255. UINT64 groupA = *(UINT64*)&data0.word0;
  256. UINT64 groupB = *(UINT64*)&data1.word0;
  257. bool canCollide = gPhysics().isCollisionEnabled(groupA, groupB);
  258. if (!canCollide)
  259. return PxFilterFlag::eSUPPRESS;
  260. pairFlags = PxPairFlag::eCONTACT_DEFAULT;
  261. return PxFilterFlags();
  262. }
  263. void parseHit(const PxRaycastHit& input, PhysicsQueryHit& output)
  264. {
  265. output.point = fromPxVector(input.position);
  266. output.normal = fromPxVector(input.normal);
  267. output.distance = input.distance;
  268. output.triangleIdx = input.faceIndex;
  269. output.uv = Vector2(input.u, input.v);
  270. output.colliderRaw = (Collider*)input.shape->userData;
  271. if (output.colliderRaw != nullptr)
  272. {
  273. CCollider* component = (CCollider*)output.colliderRaw->_getOwner(PhysicsOwnerType::Component);
  274. if (component != nullptr)
  275. output.collider = component->getHandle();
  276. }
  277. }
  278. void parseHit(const PxSweepHit& input, PhysicsQueryHit& output)
  279. {
  280. output.point = fromPxVector(input.position);
  281. output.normal = fromPxVector(input.normal);
  282. output.distance = input.distance;
  283. output.triangleIdx = input.faceIndex;
  284. output.colliderRaw = (Collider*)input.shape->userData;
  285. if (output.colliderRaw != nullptr)
  286. {
  287. CCollider* component = (CCollider*)output.colliderRaw->_getOwner(PhysicsOwnerType::Component);
  288. if (component != nullptr)
  289. output.collider = component->getHandle();
  290. }
  291. }
  292. struct PhysXRaycastQueryCallback : PxRaycastCallback
  293. {
  294. Vector<PhysicsQueryHit> data;
  295. PhysXRaycastQueryCallback()
  296. :PxRaycastCallback(nullptr, 0)
  297. { }
  298. PxAgain processTouches(const PxRaycastHit* buffer, PxU32 nbHits) override
  299. {
  300. for (PxU32 i = 0; i < nbHits; i++)
  301. {
  302. data.push_back(PhysicsQueryHit());
  303. parseHit(buffer[i], data.back());
  304. }
  305. return true;
  306. }
  307. };
  308. struct PhysXSweepQueryCallback : PxSweepCallback
  309. {
  310. Vector<PhysicsQueryHit> data;
  311. PhysXSweepQueryCallback()
  312. :PxSweepCallback(nullptr, 0)
  313. { }
  314. PxAgain processTouches(const PxSweepHit* buffer, PxU32 nbHits) override
  315. {
  316. for (PxU32 i = 0; i < nbHits; i++)
  317. {
  318. data.push_back(PhysicsQueryHit());
  319. parseHit(buffer[i], data.back());
  320. }
  321. return true;
  322. }
  323. };
  324. struct PhysXOverlapQueryCallback : PxOverlapCallback
  325. {
  326. Vector<Collider*> data;
  327. PhysXOverlapQueryCallback()
  328. :PxOverlapCallback(nullptr, 0)
  329. { }
  330. PxAgain processTouches(const PxOverlapHit* buffer, PxU32 nbHits) override
  331. {
  332. for (PxU32 i = 0; i < nbHits; i++)
  333. data.push_back((Collider*)buffer[i].shape->userData);
  334. return true;
  335. }
  336. };
  337. static PhysXAllocator gPhysXAllocator;
  338. static PhysXErrorCallback gPhysXErrorHandler;
  339. static PhysXCPUDispatcher gPhysXCPUDispatcher;
  340. static PhysXEventCallback gPhysXEventCallback;
  341. static PhysXBroadPhaseCallback gPhysXBroadphaseCallback;
  342. PhysX::PhysX(const PHYSICS_INIT_DESC& input)
  343. :Physics(input)
  344. {
  345. mScale.length = input.typicalLength;
  346. mScale.speed = input.typicalSpeed;
  347. mFoundation = PxCreateFoundation(PX_PHYSICS_VERSION, gPhysXAllocator, gPhysXErrorHandler);
  348. mPhysics = PxCreateBasePhysics(PX_PHYSICS_VERSION, *mFoundation, mScale);
  349. PxRegisterArticulations(*mPhysics);
  350. if (input.initCooking)
  351. {
  352. // Note: PhysX supports cooking for specific platforms to make the generated results better. Consider
  353. // allowing the meshes to be re-cooked when target platform is changed. Right now we just use the default value.
  354. PxCookingParams cookingParams(mScale);
  355. mCooking = PxCreateCooking(PX_PHYSICS_VERSION, *mFoundation, cookingParams);
  356. }
  357. PxSceneDesc sceneDesc(mScale); // TODO - Test out various other parameters provided by scene desc
  358. sceneDesc.gravity = toPxVector(input.gravity);
  359. sceneDesc.cpuDispatcher = &gPhysXCPUDispatcher;
  360. sceneDesc.filterShader = PhysXFilterShader;
  361. sceneDesc.simulationEventCallback = &gPhysXEventCallback;
  362. sceneDesc.broadPhaseCallback = &gPhysXBroadphaseCallback;
  363. // Optionally: eENABLE_CCD, eENABLE_KINEMATIC_STATIC_PAIRS, eENABLE_KINEMATIC_PAIRS, eENABLE_PCM
  364. sceneDesc.flags = PxSceneFlag::eENABLE_ACTIVETRANSFORMS;
  365. // Optionally: eMBP
  366. sceneDesc.broadPhaseType = PxBroadPhaseType::eSAP;
  367. mScene = mPhysics->createScene(sceneDesc);
  368. // Character controller
  369. mCharManager = PxCreateControllerManager(*mScene);
  370. mSimulationStep = input.timeStep;
  371. mDefaultMaterial = mPhysics->createMaterial(0.0f, 0.0f, 0.0f);
  372. }
  373. PhysX::~PhysX()
  374. {
  375. mCharManager->release();
  376. mScene->release();
  377. if (mCooking != nullptr)
  378. mCooking->release();
  379. mPhysics->release();
  380. mFoundation->release();
  381. }
  382. void PhysX::update()
  383. {
  384. mUpdateInProgress = true;
  385. float nextFrameTime = mLastSimulationTime + mSimulationStep;
  386. float curFrameTime = gTime().getTime();
  387. if(curFrameTime < nextFrameTime)
  388. {
  389. // TODO - Interpolate rigidbodies but perform no actual simulation
  390. return;
  391. }
  392. float simulationAmount = curFrameTime - mLastSimulationTime;
  393. while (simulationAmount >= mSimulationStep) // In case we're running really slow multiple updates might be needed
  394. {
  395. // Note: Consider delaying fetchResults one frame. This could improve performance because Physics update would be
  396. // able to run parallel to the simulation thread, but at a cost to input latency.
  397. // TODO - Provide a scratch buffer for the simulation (use the frame allocator, but I must extend it so it allocates
  398. // on a 16 byte boundary).
  399. mScene->simulate(mSimulationStep);
  400. mScene->fetchResults(true);
  401. // Update rigidbodies with new transforms
  402. PxU32 numActiveTransforms;
  403. const PxActiveTransform* activeTransforms = mScene->getActiveTransforms(numActiveTransforms);
  404. for (PxU32 i = 0; i < numActiveTransforms; i++)
  405. {
  406. Rigidbody* rigidbody = static_cast<Rigidbody*>(activeTransforms[i].userData);
  407. const PxTransform& transform = activeTransforms[i].actor2World;
  408. // Note: Make this faster, avoid dereferencing Rigidbody and attempt to access pos/rot destination directly,
  409. // use non-temporal writes
  410. rigidbody->_setTransform(fromPxVector(transform.p), fromPxQuaternion(transform.q));
  411. }
  412. simulationAmount -= mSimulationStep;
  413. }
  414. // TODO - Consider extrapolating for the remaining "simulationAmount" value
  415. mLastSimulationTime = curFrameTime;
  416. mUpdateInProgress = false;
  417. triggerEvents();
  418. }
  419. void PhysX::_reportContactEvent(const ContactEvent& event)
  420. {
  421. mContactEvents.push_back(event);
  422. }
  423. void PhysX::_reportTriggerEvent(const TriggerEvent& event)
  424. {
  425. mTriggerEvents.push_back(event);
  426. }
  427. void PhysX::_reportJointBreakEvent(const JointBreakEvent& event)
  428. {
  429. mJointBreakEvents.push_back(event);
  430. }
  431. void PhysX::triggerEvents()
  432. {
  433. CollisionData data;
  434. for(auto& entry : mTriggerEvents)
  435. {
  436. data.colliderRaw = entry.other;
  437. switch (entry.type)
  438. {
  439. case ContactEventType::ContactBegin:
  440. entry.trigger->onCollisionBegin(data);
  441. break;
  442. case ContactEventType::ContactStay:
  443. entry.trigger->onCollisionStay(data);
  444. break;
  445. case ContactEventType::ContactEnd:
  446. entry.trigger->onCollisionEnd(data);
  447. break;
  448. }
  449. }
  450. auto notifyContact = [&](Collider* obj, Collider* other, ContactEventType type,
  451. const Vector<ContactPoint>& points, bool flipNormals = false)
  452. {
  453. data.colliderRaw = other;
  454. data.contactPoints = points;
  455. if(flipNormals)
  456. {
  457. for (auto& point : data.contactPoints)
  458. point.normal = -point.normal;
  459. }
  460. SPtr<Rigidbody> rigidbody = obj->getRigidbody();
  461. if(rigidbody != nullptr)
  462. {
  463. switch (type)
  464. {
  465. case ContactEventType::ContactBegin:
  466. rigidbody->onCollisionBegin(data);
  467. break;
  468. case ContactEventType::ContactStay:
  469. rigidbody->onCollisionStay(data);
  470. break;
  471. case ContactEventType::ContactEnd:
  472. rigidbody->onCollisionEnd(data);
  473. break;
  474. }
  475. }
  476. else
  477. {
  478. switch (type)
  479. {
  480. case ContactEventType::ContactBegin:
  481. obj->onCollisionBegin(data);
  482. break;
  483. case ContactEventType::ContactStay:
  484. obj->onCollisionStay(data);
  485. break;
  486. case ContactEventType::ContactEnd:
  487. obj->onCollisionEnd(data);
  488. break;
  489. }
  490. }
  491. };
  492. for (auto& entry : mContactEvents)
  493. {
  494. notifyContact(entry.colliderA, entry.colliderB, entry.type, entry.points, true);
  495. notifyContact(entry.colliderB, entry.colliderA, entry.type, entry.points, false);
  496. }
  497. for(auto& entry : mJointBreakEvents)
  498. {
  499. entry.joint->onJointBreak();
  500. }
  501. mTriggerEvents.clear();
  502. mContactEvents.clear();
  503. mJointBreakEvents.clear();
  504. }
  505. SPtr<PhysicsMaterial> PhysX::createMaterial(float staticFriction, float dynamicFriction, float restitution)
  506. {
  507. return bs_shared_ptr_new<PhysXMaterial>(mPhysics, staticFriction, dynamicFriction, restitution);
  508. }
  509. SPtr<PhysicsMesh> PhysX::createMesh(const MeshDataPtr& meshData, PhysicsMeshType type)
  510. {
  511. return bs_shared_ptr_new<PhysXMesh>(meshData, type);
  512. }
  513. SPtr<Rigidbody> PhysX::createRigidbody(const HSceneObject& linkedSO)
  514. {
  515. return bs_shared_ptr_new<PhysXRigidbody>(mPhysics, mScene, linkedSO);
  516. }
  517. SPtr<BoxCollider> PhysX::createBoxCollider(const Vector3& extents, const Vector3& position,
  518. const Quaternion& rotation)
  519. {
  520. return bs_shared_ptr_new<PhysXBoxCollider>(mPhysics, position, rotation, extents);
  521. }
  522. SPtr<SphereCollider> PhysX::createSphereCollider(float radius, const Vector3& position, const Quaternion& rotation)
  523. {
  524. return bs_shared_ptr_new<PhysXSphereCollider>(mPhysics, position, rotation, radius);
  525. }
  526. SPtr<PlaneCollider> PhysX::createPlaneCollider(const Vector3& position, const Quaternion& rotation)
  527. {
  528. return bs_shared_ptr_new<PhysXPlaneCollider>(mPhysics, position, rotation);
  529. }
  530. SPtr<CapsuleCollider> PhysX::createCapsuleCollider(float radius, float halfHeight, const Vector3& position,
  531. const Quaternion& rotation)
  532. {
  533. return bs_shared_ptr_new<PhysXCapsuleCollider>(mPhysics, position, rotation, radius, halfHeight);
  534. }
  535. SPtr<MeshCollider> PhysX::createMeshCollider(const Vector3& position, const Quaternion& rotation)
  536. {
  537. return bs_shared_ptr_new<PhysXMeshCollider>(mPhysics, position, rotation);
  538. }
  539. SPtr<FixedJoint> PhysX::createFixedJoint()
  540. {
  541. return bs_shared_ptr_new<PhysXFixedJoint>(mPhysics);
  542. }
  543. SPtr<DistanceJoint> PhysX::createDistanceJoint()
  544. {
  545. return bs_shared_ptr_new<PhysXDistanceJoint>(mPhysics);
  546. }
  547. SPtr<HingeJoint> PhysX::createHingeJoint()
  548. {
  549. return bs_shared_ptr_new<PhysXHingeJoint>(mPhysics);
  550. }
  551. SPtr<SphericalJoint> PhysX::createSphericalJoint()
  552. {
  553. return bs_shared_ptr_new<PhysXSphericalJoint>(mPhysics);
  554. }
  555. SPtr<SliderJoint> PhysX::createSliderJoint()
  556. {
  557. return bs_shared_ptr_new<PhysXSliderJoint>(mPhysics);
  558. }
  559. SPtr<D6Joint> PhysX::createD6Joint()
  560. {
  561. return bs_shared_ptr_new<PhysXD6Joint>(mPhysics);
  562. }
  563. SPtr<CharacterController> PhysX::createCharacterController(const CHAR_CONTROLLER_DESC& desc)
  564. {
  565. return bs_shared_ptr_new<PhysXCharacterController>(mCharManager, desc);
  566. }
  567. Vector<PhysicsQueryHit> PhysX::sweepAll(const PxGeometry& geometry, const PxTransform& tfrm, const Vector3& unitDir,
  568. UINT64 layer, float maxDist) const
  569. {
  570. PhysXSweepQueryCallback output;
  571. PxQueryFilterData filterData;
  572. memcpy(&filterData.data.word0, &layer, sizeof(layer));
  573. mScene->sweep(geometry, tfrm, toPxVector(unitDir), maxDist, output,
  574. PxHitFlag::eDEFAULT | PxHitFlag::eUV, filterData);
  575. return output.data;
  576. }
  577. bool PhysX::sweepAny(const PxGeometry& geometry, const PxTransform& tfrm, const Vector3& unitDir, UINT64 layer,
  578. float maxDist) const
  579. {
  580. PxSweepBuffer output;
  581. PxQueryFilterData filterData;
  582. filterData.flags |= PxQueryFlag::eANY_HIT;
  583. memcpy(&filterData.data.word0, &layer, sizeof(layer));
  584. return mScene->sweep(geometry, tfrm, toPxVector(unitDir), maxDist, output,
  585. PxHitFlag::eDEFAULT | PxHitFlag::eUV | PxHitFlag::eMESH_ANY, filterData);
  586. }
  587. bool PhysX::rayCast(const Vector3& origin, const Vector3& unitDir, PhysicsQueryHit& hit, UINT64 layer, float max)
  588. {
  589. PxRaycastBuffer output;
  590. PxQueryFilterData filterData;
  591. memcpy(&filterData.data.word0, &layer, sizeof(layer));
  592. bool wasHit = mScene->raycast(toPxVector(origin),
  593. toPxVector(unitDir), max, output, PxHitFlag::eDEFAULT | PxHitFlag::eUV, filterData);
  594. if (wasHit)
  595. parseHit(output.block, hit);
  596. return wasHit;
  597. }
  598. bool PhysX::boxCast(const AABox& box, const Quaternion& rotation, const Vector3& unitDir, PhysicsQueryHit& hit,
  599. UINT64 layer, float max)
  600. {
  601. PxBoxGeometry geometry(toPxVector(box.getHalfSize()));
  602. PxTransform transform = toPxTransform(box.getCenter(), rotation);
  603. return sweep(geometry, transform, unitDir, hit, layer, max);
  604. }
  605. bool PhysX::sphereCast(const Sphere& sphere, const Vector3& unitDir, PhysicsQueryHit& hit,
  606. UINT64 layer, float max)
  607. {
  608. PxSphereGeometry geometry(sphere.getRadius());
  609. PxTransform transform = toPxTransform(sphere.getCenter(), Quaternion::IDENTITY);
  610. return sweep(geometry, transform, unitDir, hit, layer, max);
  611. }
  612. bool PhysX::capsuleCast(const Capsule& capsule, const Quaternion& rotation, const Vector3& unitDir,
  613. PhysicsQueryHit& hit, UINT64 layer, float max)
  614. {
  615. PxCapsuleGeometry geometry(capsule.getRadius(), capsule.getHeight() * 0.5f);
  616. PxTransform transform = toPxTransform(capsule.getCenter(), Quaternion::IDENTITY);
  617. return sweep(geometry, transform, unitDir, hit, layer, max);
  618. }
  619. bool PhysX::convexCast(const HPhysicsMesh& mesh, const Vector3& position, const Quaternion& rotation,
  620. const Vector3& unitDir, PhysicsQueryHit& hit, UINT64 layer, float max)
  621. {
  622. if (mesh == nullptr)
  623. return false;
  624. PhysXMesh* physxMesh = static_cast<PhysXMesh*>(mesh.get());
  625. if (physxMesh->getType() != PhysicsMeshType::Convex)
  626. return false;
  627. PxConvexMeshGeometry geometry(physxMesh->_getConvex());
  628. PxTransform transform = toPxTransform(position, rotation);
  629. return sweep(geometry, transform, unitDir, hit, layer, max);
  630. }
  631. Vector<PhysicsQueryHit> PhysX::rayCastAll(const Vector3& origin, const Vector3& unitDir,
  632. UINT64 layer, float max)
  633. {
  634. PhysXRaycastQueryCallback output;
  635. PxQueryFilterData filterData;
  636. memcpy(&filterData.data.word0, &layer, sizeof(layer));
  637. mScene->raycast(toPxVector(origin), toPxVector(unitDir), max, output,
  638. PxHitFlag::eDEFAULT | PxHitFlag::eUV | PxHitFlag::eMESH_MULTIPLE, filterData);
  639. return output.data;
  640. }
  641. Vector<PhysicsQueryHit> PhysX::boxCastAll(const AABox& box, const Quaternion& rotation,
  642. const Vector3& unitDir, UINT64 layer, float max)
  643. {
  644. PxBoxGeometry geometry(toPxVector(box.getHalfSize()));
  645. PxTransform transform = toPxTransform(box.getCenter(), rotation);
  646. return sweepAll(geometry, transform, unitDir, layer, max);
  647. }
  648. Vector<PhysicsQueryHit> PhysX::sphereCastAll(const Sphere& sphere, const Vector3& unitDir,
  649. UINT64 layer, float max)
  650. {
  651. PxSphereGeometry geometry(sphere.getRadius());
  652. PxTransform transform = toPxTransform(sphere.getCenter(), Quaternion::IDENTITY);
  653. return sweepAll(geometry, transform, unitDir, layer, max);
  654. }
  655. Vector<PhysicsQueryHit> PhysX::capsuleCastAll(const Capsule& capsule, const Quaternion& rotation,
  656. const Vector3& unitDir, UINT64 layer, float max)
  657. {
  658. PxCapsuleGeometry geometry(capsule.getRadius(), capsule.getHeight() * 0.5f);
  659. PxTransform transform = toPxTransform(capsule.getCenter(), Quaternion::IDENTITY);
  660. return sweepAll(geometry, transform, unitDir, layer, max);
  661. }
  662. Vector<PhysicsQueryHit> PhysX::convexCastAll(const HPhysicsMesh& mesh, const Vector3& position,
  663. const Quaternion& rotation, const Vector3& unitDir, UINT64 layer, float max)
  664. {
  665. if (mesh == nullptr)
  666. return Vector<PhysicsQueryHit>(0);
  667. PhysXMesh* physxMesh = static_cast<PhysXMesh*>(mesh.get());
  668. if (physxMesh->getType() != PhysicsMeshType::Convex)
  669. return Vector<PhysicsQueryHit>(0);
  670. PxConvexMeshGeometry geometry(physxMesh->_getConvex());
  671. PxTransform transform = toPxTransform(position, rotation);
  672. return sweepAll(geometry, transform, unitDir, layer, max);
  673. }
  674. bool PhysX::rayCastAny(const Vector3& origin, const Vector3& unitDir,
  675. UINT64 layer, float max)
  676. {
  677. PxRaycastBuffer output;
  678. PxQueryFilterData filterData;
  679. filterData.flags |= PxQueryFlag::eANY_HIT;
  680. memcpy(&filterData.data.word0, &layer, sizeof(layer));
  681. return mScene->raycast(toPxVector(origin),
  682. toPxVector(unitDir), max, output, PxHitFlag::eDEFAULT | PxHitFlag::eUV | PxHitFlag::eMESH_ANY, filterData);
  683. }
  684. bool PhysX::boxCastAny(const AABox& box, const Quaternion& rotation, const Vector3& unitDir,
  685. UINT64 layer, float max)
  686. {
  687. PxBoxGeometry geometry(toPxVector(box.getHalfSize()));
  688. PxTransform transform = toPxTransform(box.getCenter(), rotation);
  689. return sweepAny(geometry, transform, unitDir, layer, max);
  690. }
  691. bool PhysX::sphereCastAny(const Sphere& sphere, const Vector3& unitDir,
  692. UINT64 layer, float max)
  693. {
  694. PxSphereGeometry geometry(sphere.getRadius());
  695. PxTransform transform = toPxTransform(sphere.getCenter(), Quaternion::IDENTITY);
  696. return sweepAny(geometry, transform, unitDir, layer, max);
  697. }
  698. bool PhysX::capsuleCastAny(const Capsule& capsule, const Quaternion& rotation, const Vector3& unitDir,
  699. UINT64 layer, float max)
  700. {
  701. PxCapsuleGeometry geometry(capsule.getRadius(), capsule.getHeight() * 0.5f);
  702. PxTransform transform = toPxTransform(capsule.getCenter(), Quaternion::IDENTITY);
  703. return sweepAny(geometry, transform, unitDir, layer, max);
  704. }
  705. bool PhysX::convexCastAny(const HPhysicsMesh& mesh, const Vector3& position, const Quaternion& rotation,
  706. const Vector3& unitDir, UINT64 layer, float max)
  707. {
  708. if (mesh == nullptr)
  709. return false;
  710. PhysXMesh* physxMesh = static_cast<PhysXMesh*>(mesh.get());
  711. if (physxMesh->getType() != PhysicsMeshType::Convex)
  712. return false;
  713. PxConvexMeshGeometry geometry(physxMesh->_getConvex());
  714. PxTransform transform = toPxTransform(position, rotation);
  715. return sweepAny(geometry, transform, unitDir, layer, max);
  716. }
  717. Vector<Collider*> PhysX::_boxOverlap(const AABox& box, const Quaternion& rotation,
  718. UINT64 layer)
  719. {
  720. PxBoxGeometry geometry(toPxVector(box.getHalfSize()));
  721. PxTransform transform = toPxTransform(box.getCenter(), rotation);
  722. return overlap(geometry, transform, layer);
  723. }
  724. Vector<Collider*> PhysX::_sphereOverlap(const Sphere& sphere, UINT64 layer)
  725. {
  726. PxSphereGeometry geometry(sphere.getRadius());
  727. PxTransform transform = toPxTransform(sphere.getCenter(), Quaternion::IDENTITY);
  728. return overlap(geometry, transform, layer);
  729. }
  730. Vector<Collider*> PhysX::_capsuleOverlap(const Capsule& capsule, const Quaternion& rotation,
  731. UINT64 layer)
  732. {
  733. PxCapsuleGeometry geometry(capsule.getRadius(), capsule.getHeight() * 0.5f);
  734. PxTransform transform = toPxTransform(capsule.getCenter(), Quaternion::IDENTITY);
  735. return overlap(geometry, transform, layer);
  736. }
  737. Vector<Collider*> PhysX::_convexOverlap(const HPhysicsMesh& mesh, const Vector3& position,
  738. const Quaternion& rotation, UINT64 layer)
  739. {
  740. if (mesh == nullptr)
  741. return Vector<Collider*>(0);
  742. PhysXMesh* physxMesh = static_cast<PhysXMesh*>(mesh.get());
  743. if (physxMesh->getType() != PhysicsMeshType::Convex)
  744. return Vector<Collider*>(0);
  745. PxConvexMeshGeometry geometry(physxMesh->_getConvex());
  746. PxTransform transform = toPxTransform(position, rotation);
  747. return overlap(geometry, transform, layer);
  748. }
  749. bool PhysX::boxOverlapAny(const AABox& box, const Quaternion& rotation, UINT64 layer)
  750. {
  751. PxBoxGeometry geometry(toPxVector(box.getHalfSize()));
  752. PxTransform transform = toPxTransform(box.getCenter(), rotation);
  753. return overlapAny(geometry, transform, layer);
  754. }
  755. bool PhysX::sphereOverlapAny(const Sphere& sphere, UINT64 layer)
  756. {
  757. PxSphereGeometry geometry(sphere.getRadius());
  758. PxTransform transform = toPxTransform(sphere.getCenter(), Quaternion::IDENTITY);
  759. return overlapAny(geometry, transform, layer);
  760. }
  761. bool PhysX::capsuleOverlapAny(const Capsule& capsule, const Quaternion& rotation,
  762. UINT64 layer)
  763. {
  764. PxCapsuleGeometry geometry(capsule.getRadius(), capsule.getHeight() * 0.5f);
  765. PxTransform transform = toPxTransform(capsule.getCenter(), Quaternion::IDENTITY);
  766. return overlapAny(geometry, transform, layer);
  767. }
  768. bool PhysX::convexOverlapAny(const HPhysicsMesh& mesh, const Vector3& position, const Quaternion& rotation,
  769. UINT64 layer)
  770. {
  771. if (mesh == nullptr)
  772. return false;
  773. PhysXMesh* physxMesh = static_cast<PhysXMesh*>(mesh.get());
  774. if (physxMesh->getType() != PhysicsMeshType::Convex)
  775. return false;
  776. PxConvexMeshGeometry geometry(physxMesh->_getConvex());
  777. PxTransform transform = toPxTransform(position, rotation);
  778. return overlapAny(geometry, transform, layer);
  779. }
  780. bool PhysX::sweep(const PxGeometry& geometry, const PxTransform& tfrm, const Vector3& unitDir,
  781. PhysicsQueryHit& hit, UINT64 layer, float maxDist) const
  782. {
  783. PxSweepBuffer output;
  784. PxQueryFilterData filterData;
  785. memcpy(&filterData.data.word0, &layer, sizeof(layer));
  786. bool wasHit = mScene->sweep(geometry, tfrm, toPxVector(unitDir), maxDist, output,
  787. PxHitFlag::eDEFAULT | PxHitFlag::eUV, filterData);
  788. if (wasHit)
  789. parseHit(output.block, hit);
  790. return wasHit;
  791. }
  792. bool PhysX::overlapAny(const PxGeometry& geometry, const PxTransform& tfrm, UINT64 layer) const
  793. {
  794. PxOverlapBuffer output;
  795. PxQueryFilterData filterData;
  796. memcpy(&filterData.data.word0, &layer, sizeof(layer));
  797. return mScene->overlap(geometry, tfrm, output, filterData);
  798. }
  799. Vector<Collider*> PhysX::overlap(const PxGeometry& geometry, const PxTransform& tfrm, UINT64 layer) const
  800. {
  801. PhysXOverlapQueryCallback output;
  802. PxQueryFilterData filterData;
  803. memcpy(&filterData.data.word0, &layer, sizeof(layer));
  804. mScene->overlap(geometry, tfrm, output, filterData);
  805. return output.data;
  806. }
  807. void PhysX::setFlag(PhysicsFlags flag, bool enabled)
  808. {
  809. Physics::setFlag(flag, enabled);
  810. mCharManager->setOverlapRecoveryModule(mFlags.isSet(PhysicsFlag::CCT_OverlapRecovery));
  811. mCharManager->setPreciseSweeps(mFlags.isSet(PhysicsFlag::CCT_PreciseSweeps));
  812. mCharManager->setTessellation(mFlags.isSet(PhysicsFlag::CCT_Tesselation), mTesselationLength);
  813. }
  814. Vector3 PhysX::getGravity() const
  815. {
  816. return fromPxVector(mScene->getGravity());
  817. }
  818. void PhysX::setGravity(const Vector3& gravity)
  819. {
  820. mScene->setGravity(toPxVector(gravity));
  821. }
  822. void PhysX::setMaxTesselationEdgeLength(float length)
  823. {
  824. mTesselationLength = length;
  825. mCharManager->setTessellation(mFlags.isSet(PhysicsFlag::CCT_Tesselation), mTesselationLength);
  826. }
  827. UINT32 PhysX::addBroadPhaseRegion(const AABox& region)
  828. {
  829. UINT32 id = mNextRegionIdx++;
  830. PxBroadPhaseRegion pxRegion;
  831. pxRegion.bounds = PxBounds3(toPxVector(region.getMin()), toPxVector(region.getMax()));
  832. pxRegion.userData = (void*)(UINT64)id;
  833. UINT32 handle = mScene->addBroadPhaseRegion(pxRegion, true);
  834. mBroadPhaseRegionHandles[id] = handle;
  835. return handle;
  836. }
  837. void PhysX::removeBroadPhaseRegion(UINT32 regionId)
  838. {
  839. auto iterFind = mBroadPhaseRegionHandles.find(regionId);
  840. if (iterFind == mBroadPhaseRegionHandles.end())
  841. return;
  842. mScene->removeBroadPhaseRegion(iterFind->second);
  843. mBroadPhaseRegionHandles.erase(iterFind);
  844. }
  845. void PhysX::clearBroadPhaseRegions()
  846. {
  847. for(auto& entry : mBroadPhaseRegionHandles)
  848. mScene->removeBroadPhaseRegion(entry.second);
  849. mBroadPhaseRegionHandles.clear();
  850. }
  851. PhysX& gPhysX()
  852. {
  853. return static_cast<PhysX&>(PhysX::instance());
  854. }
  855. }