ImageBasedLighting.bslinc 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227
  1. Technique : base("ImageBasedLighting") =
  2. {
  3. Language = "HLSL11";
  4. Pass =
  5. {
  6. Common =
  7. {
  8. // Arbitrary limit, increase if needed
  9. #define MAX_PROBES 512
  10. struct ReflProbeData
  11. {
  12. float3 position;
  13. float radius;
  14. float3 boxExtents;
  15. float4x4 invBoxTransform;
  16. float transitionDistance;
  17. uint cubemapIdx;
  18. uint type; // 0 - Sphere, 1 - Box
  19. };
  20. TextureCube gSkyReflectionTex;
  21. SamplerState gSkyReflectionSamp;
  22. TextureCube gSkyIrradianceTex;
  23. SamplerState gSkyIrradianceSamp;
  24. TextureCubeArray gReflProbeCubemaps;
  25. SamplerState gReflProbeSamp;
  26. Texture2D gPreintegratedEnvBRDF;
  27. SamplerState gPreintegratedEnvBRDFSamp;
  28. StructuredBuffer<ReflProbeData> gReflectionProbes;
  29. #ifdef USE_COMPUTE_INDICES
  30. groupshared uint gReflectionProbeIndices[MAX_PROBES];
  31. #endif
  32. #ifdef USE_LIGHT_GRID_INDICES
  33. Buffer<uint> gReflectionProbeIndices;
  34. #endif
  35. cbuffer ReflProbeParams
  36. {
  37. uint gReflCubemapNumMips;
  38. uint gNumProbes;
  39. uint gSkyCubemapAvailable;
  40. uint gSkyCubemapNumMips;
  41. float gSkyBrightness;
  42. }
  43. float3 getSkyIndirectDiffuse(float3 dir)
  44. {
  45. return gSkyIrradianceTex.SampleLevel(gSkyIrradianceSamp, dir, 0).rgb * gSkyBrightness;
  46. }
  47. float getSphereReflectionContribution(float normalizedDistance)
  48. {
  49. // If closer than 60% to the probe radius, then full contribution is used.
  50. // For the other 40% we smoothstep and return contribution lower than 1 so other
  51. // reflection probes can be blended.
  52. // smoothstep from 1 to 0.6:
  53. // float t = clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0);
  54. // return t * t * (3.0 - 2.0 * t);
  55. float t = saturate(2.5 - 2.5 * normalizedDistance);
  56. return t * t * (3.0 - 2.0 * t);
  57. }
  58. float3 getLookupForSphereProxy(float3 originWS, float3 dirWS, float3 centerWS, float radius)
  59. {
  60. float radius2 = radius * radius;
  61. float3 originLS = originWS - centerWS;
  62. float a = dot(originLS, dirWS);
  63. float dist2 = a * a - dot(originLS, originLS) + radius2;
  64. float3 lookupDir = dirWS;
  65. [flatten]
  66. if(dist2 >= 0)
  67. {
  68. float farDist = sqrt(dist2) - a;
  69. lookupDir = originLS + farDist * dirWS;
  70. }
  71. return lookupDir;
  72. }
  73. float getDistBoxToPoint(float3 pt, float3 extents)
  74. {
  75. float3 d = max(max(-extents - pt, 0), pt - extents);
  76. return length(d);
  77. }
  78. float3 getLookupForBoxProxy(float3 originWS, float3 dirWS, float3 centerWS, float3 extents, float4x4 invBoxTransform, float transitionDistance, out float contribution)
  79. {
  80. // Transform origin and direction into box local space, where it is united sized and axis aligned
  81. float3 originLS = mul(invBoxTransform, float4(originWS, 1)).xyz;
  82. float3 dirLS = mul(invBoxTransform, float4(dirWS, 0)).xyz;
  83. // Get distance from 3 min planes and 3 max planes of the unit AABB
  84. // float3 unitVec = float3(1.0f, 1.0f, 1.0f);
  85. // float3 intersectsMax = (unitVec - originLS) / dirLS;
  86. // float3 intersectsMin = (-unitVec - originLS) / dirLS;
  87. float3 invDirLS = rcp(dirLS);
  88. float3 intersectsMax = invDirLS - originLS * invDirLS;
  89. float3 intersectsMin = -invDirLS - originLS * invDirLS;
  90. // Find nearest positive (along ray direction) intersection
  91. float3 positiveIntersections = max(intersectsMax, intersectsMin);
  92. float intersectDist = min(positiveIntersections.x, min(positiveIntersections.y, positiveIntersections.z));
  93. float3 intersectPositionWS = originWS + intersectDist * dirWS;
  94. float3 lookupDir = intersectPositionWS - centerWS;
  95. // Calculate contribution
  96. //// Shrink the box so fade out happens within box extents
  97. float3 reducedExtents = extents - float3(transitionDistance, transitionDistance, transitionDistance);
  98. float distToBox = getDistBoxToPoint(originLS * reducedExtents, reducedExtents);
  99. float normalizedDistance = distToBox / transitionDistance;
  100. // If closer than 70% to the probe radius, then full contribution is used.
  101. // For the other 30% we smoothstep and return contribution lower than 1 so other
  102. // reflection probes can be blended.
  103. // smoothstep from 1 to 0.7:
  104. // float t = clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0);
  105. // return t * t * (3.0 - 2.0 * t);
  106. float t = saturate(3.3333 - 3.3333 * normalizedDistance);
  107. contribution = t * t * (3.0 - 2.0 * t);
  108. return lookupDir;
  109. }
  110. float3 gatherReflectionRadiance(float3 worldPos, float3 dir, float roughness, float3 specularColor, uint probeOffset, uint numProbes)
  111. {
  112. #if CAPTURING_REFLECTIONS
  113. return specularColor;
  114. #else
  115. float mipLevel = mapRoughnessToMipLevel(roughness, gReflCubemapNumMips);
  116. float3 output = 0;
  117. float leftoverContribution = 1.0f;
  118. for(uint i = 0; i < numProbes; i++)
  119. {
  120. if(leftoverContribution < 0.001f)
  121. break;
  122. uint probeIdx = gReflectionProbeIndices[probeOffset + i];
  123. ReflProbeData probeData = gReflectionProbes[probeIdx];
  124. float3 probeToPos = worldPos - probeData.position;
  125. float distToProbe = length(probeToPos);
  126. float normalizedDist = saturate(distToProbe / probeData.radius);
  127. if(distToProbe <= probeData.radius)
  128. {
  129. float3 correctedDir;
  130. float contribution = 0;
  131. if(probeData.type == 0) // Sphere
  132. {
  133. correctedDir = getLookupForSphereProxy(worldPos, dir, probeData.position, probeData.radius);
  134. contribution = getSphereReflectionContribution(normalizedDist);
  135. }
  136. else if(probeData.type == 1) // Box
  137. {
  138. correctedDir = getLookupForBoxProxy(worldPos, dir, probeData.position, probeData.boxExtents, probeData.invBoxTransform, probeData.transitionDistance, contribution);
  139. }
  140. float4 sample = gReflProbeCubemaps.SampleLevel(gReflProbeSamp, float4(correctedDir, probeData.cubemapIdx), mipLevel);
  141. sample *= contribution;
  142. output += sample.rgb * leftoverContribution;
  143. leftoverContribution *= (1.0f - contribution);
  144. }
  145. }
  146. if(gSkyCubemapAvailable > 0)
  147. {
  148. float skyMipLevel = mapRoughnessToMipLevel(roughness, gSkyCubemapNumMips);
  149. float4 sample = gSkyReflectionTex.SampleLevel(gSkyReflectionSamp, dir, skyMipLevel) * gSkyBrightness;
  150. output += sample.rgb * leftoverContribution;
  151. }
  152. return output;
  153. #endif
  154. }
  155. float3 getImageBasedSpecular(float3 worldPos, float3 V, float3 R, SurfaceData surfaceData, uint probeOffset, uint numProbes)
  156. {
  157. // See C++ code for generation of gPreintegratedEnvBRDF to see why this code works as is
  158. float3 N = surfaceData.worldNormal.xyz;
  159. float NoV = saturate(dot(N, V));
  160. // Note: Using a fixed F0 value of 0.04 (plastic) for dielectrics, and using albedo as specular for conductors.
  161. // For more customizability allow the user to provide separate albedo/specular colors for both types.
  162. float3 specularColor = lerp(float3(0.04f, 0.04f, 0.04f), surfaceData.albedo.rgb, surfaceData.metalness);
  163. float3 radiance = gatherReflectionRadiance(worldPos, R, surfaceData.roughness, specularColor, probeOffset, numProbes);
  164. float2 envBRDF = gPreintegratedEnvBRDF.SampleLevel(gPreintegratedEnvBRDFSamp, float2(NoV, surfaceData.roughness), 0).rg;
  165. return radiance * (specularColor * envBRDF.x + envBRDF.y);
  166. }
  167. };
  168. };
  169. };
  170. Technique : base("ImageBasedLighting") =
  171. {
  172. Language = "GLSL";
  173. Pass =
  174. {
  175. Common =
  176. {
  177. };
  178. };
  179. };