BsCamera.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897
  1. //********************************** Banshee Engine (www.banshee3d.com) **************************************************//
  2. //**************** Copyright (c) 2016 Marko Pintera ([email protected]). All rights reserved. **********************//
  3. #include "BsCamera.h"
  4. #include "BsCameraRTTI.h"
  5. #include "BsMath.h"
  6. #include "BsMatrix3.h"
  7. #include "BsVector2.h"
  8. #include "BsAABox.h"
  9. #include "BsSphere.h"
  10. #include "BsException.h"
  11. #include "BsRenderAPI.h"
  12. #include "BsSceneObject.h"
  13. #include "BsRendererManager.h"
  14. #include "BsRenderer.h"
  15. #include "BsFrameAlloc.h"
  16. namespace bs
  17. {
  18. const float CameraBase::INFINITE_FAR_PLANE_ADJUST = 0.00001f;
  19. CameraBase::CameraBase()
  20. : mLayers(0xFFFFFFFFFFFFFFFF), mCameraFlags(CameraFlag::HDR), mPosition(BsZero), mRotation(BsIdentity)
  21. , mIsActive(true), mProjType(PT_PERSPECTIVE), mHorzFOV(Degree(90.0f)), mFarDist(1000.0f), mNearDist(0.05f)
  22. , mAspect(1.33333333333333f), mOrthoHeight(5), mPriority(0), mCustomViewMatrix(false), mCustomProjMatrix(false)
  23. , mMSAA(1), mFrustumExtentsManuallySet(false), mProjMatrixRS(BsZero), mProjMatrix(BsZero), mViewMatrix(BsZero)
  24. , mProjMatrixRSInv(BsZero), mProjMatrixInv(BsZero), mViewMatrixInv(BsZero), mRecalcFrustum(true)
  25. , mRecalcFrustumPlanes(true), mRecalcView(true)
  26. {
  27. mPPSettings = RendererManager::instance().getActive()->createPostProcessSettings();
  28. invalidateFrustum();
  29. }
  30. void CameraBase::setHorzFOV(const Radian& fov)
  31. {
  32. mHorzFOV = fov;
  33. invalidateFrustum();
  34. _markCoreDirty();
  35. }
  36. const Radian& CameraBase::getHorzFOV() const
  37. {
  38. return mHorzFOV;
  39. }
  40. void CameraBase::setFarClipDistance(float farPlane)
  41. {
  42. mFarDist = farPlane;
  43. invalidateFrustum();
  44. _markCoreDirty();
  45. }
  46. float CameraBase::getFarClipDistance() const
  47. {
  48. return mFarDist;
  49. }
  50. void CameraBase::setNearClipDistance(float nearPlane)
  51. {
  52. if (nearPlane <= 0)
  53. {
  54. BS_EXCEPT(InvalidParametersException, "Near clip distance must be greater than zero.");
  55. }
  56. mNearDist = nearPlane;
  57. invalidateFrustum();
  58. _markCoreDirty();
  59. }
  60. float CameraBase::getNearClipDistance() const
  61. {
  62. return mNearDist;
  63. }
  64. const Matrix4& CameraBase::getProjectionMatrix() const
  65. {
  66. updateFrustum();
  67. return mProjMatrix;
  68. }
  69. const Matrix4& CameraBase::getProjectionMatrixInv() const
  70. {
  71. updateFrustum();
  72. return mProjMatrixInv;
  73. }
  74. const Matrix4& CameraBase::getProjectionMatrixRS() const
  75. {
  76. updateFrustum();
  77. return mProjMatrixRS;
  78. }
  79. const Matrix4& CameraBase::getProjectionMatrixRSInv() const
  80. {
  81. updateFrustum();
  82. return mProjMatrixRSInv;
  83. }
  84. const Matrix4& CameraBase::getViewMatrix() const
  85. {
  86. updateView();
  87. return mViewMatrix;
  88. }
  89. const Matrix4& CameraBase::getViewMatrixInv() const
  90. {
  91. updateView();
  92. return mViewMatrixInv;
  93. }
  94. const ConvexVolume& CameraBase::getFrustum() const
  95. {
  96. // Make any pending updates to the calculated frustum planes
  97. updateFrustumPlanes();
  98. return mFrustum;
  99. }
  100. ConvexVolume CameraBase::getWorldFrustum() const
  101. {
  102. const Vector<Plane>& frustumPlanes = getFrustum().getPlanes();
  103. Matrix4 worldMatrix;
  104. worldMatrix.setTRS(mPosition, mRotation, Vector3::ONE);
  105. Vector<Plane> worldPlanes(frustumPlanes.size());
  106. UINT32 i = 0;
  107. for (auto& plane : frustumPlanes)
  108. {
  109. worldPlanes[i] = worldMatrix.multiplyAffine(plane);
  110. i++;
  111. }
  112. return ConvexVolume(worldPlanes);
  113. }
  114. void CameraBase::calcProjectionParameters(float& left, float& right, float& bottom, float& top) const
  115. {
  116. if (mCustomProjMatrix)
  117. {
  118. // Convert clipspace corners to camera space
  119. Matrix4 invProj = mProjMatrix.inverse();
  120. Vector3 topLeft(-0.5f, 0.5f, 0.0f);
  121. Vector3 bottomRight(0.5f, -0.5f, 0.0f);
  122. topLeft = invProj.multiply(topLeft);
  123. bottomRight = invProj.multiply(bottomRight);
  124. left = topLeft.x;
  125. top = topLeft.y;
  126. right = bottomRight.x;
  127. bottom = bottomRight.y;
  128. }
  129. else
  130. {
  131. if (mFrustumExtentsManuallySet)
  132. {
  133. left = mLeft;
  134. right = mRight;
  135. top = mTop;
  136. bottom = mBottom;
  137. }
  138. else if (mProjType == PT_PERSPECTIVE)
  139. {
  140. Radian thetaX(mHorzFOV * 0.5f);
  141. float tanThetaX = Math::tan(thetaX);
  142. float tanThetaY = tanThetaX / mAspect;
  143. float half_w = tanThetaX * mNearDist;
  144. float half_h = tanThetaY * mNearDist;
  145. left = -half_w;
  146. right = half_w;
  147. bottom = -half_h;
  148. top = half_h;
  149. mLeft = left;
  150. mRight = right;
  151. mTop = top;
  152. mBottom = bottom;
  153. }
  154. else
  155. {
  156. float half_w = getOrthoWindowWidth() * 0.5f;
  157. float half_h = getOrthoWindowHeight() * 0.5f;
  158. left = -half_w;
  159. right = half_w;
  160. bottom = -half_h;
  161. top = half_h;
  162. mLeft = left;
  163. mRight = right;
  164. mTop = top;
  165. mBottom = bottom;
  166. }
  167. }
  168. }
  169. void CameraBase::updateFrustum() const
  170. {
  171. if (isFrustumOutOfDate())
  172. {
  173. float left, right, bottom, top;
  174. calcProjectionParameters(left, right, bottom, top);
  175. if (!mCustomProjMatrix)
  176. {
  177. float inv_w = 1 / (right - left);
  178. float inv_h = 1 / (top - bottom);
  179. float inv_d = 1 / (mFarDist - mNearDist);
  180. if (mProjType == PT_PERSPECTIVE)
  181. {
  182. float A = 2 * mNearDist * inv_w;
  183. float B = 2 * mNearDist * inv_h;
  184. float C = (right + left) * inv_w;
  185. float D = (top + bottom) * inv_h;
  186. float q, qn;
  187. if (mFarDist == 0)
  188. {
  189. // Infinite far plane
  190. q = CameraBase::INFINITE_FAR_PLANE_ADJUST - 1;
  191. qn = mNearDist * (CameraBase::INFINITE_FAR_PLANE_ADJUST - 2);
  192. }
  193. else
  194. {
  195. q = -(mFarDist + mNearDist) * inv_d;
  196. qn = -2 * (mFarDist * mNearDist) * inv_d;
  197. }
  198. mProjMatrix = Matrix4::ZERO;
  199. mProjMatrix[0][0] = A;
  200. mProjMatrix[0][2] = C;
  201. mProjMatrix[1][1] = B;
  202. mProjMatrix[1][2] = D;
  203. mProjMatrix[2][2] = q;
  204. mProjMatrix[2][3] = qn;
  205. mProjMatrix[3][2] = -1;
  206. }
  207. else if (mProjType == PT_ORTHOGRAPHIC)
  208. {
  209. float A = 2 * inv_w;
  210. float B = 2 * inv_h;
  211. float C = -(right + left) * inv_w;
  212. float D = -(top + bottom) * inv_h;
  213. float q, qn;
  214. if (mFarDist == 0)
  215. {
  216. // Can not do infinite far plane here, avoid divided zero only
  217. q = -CameraBase::INFINITE_FAR_PLANE_ADJUST / mNearDist;
  218. qn = -CameraBase::INFINITE_FAR_PLANE_ADJUST - 1;
  219. }
  220. else
  221. {
  222. q = -2 * inv_d;
  223. qn = -(mFarDist + mNearDist) * inv_d;
  224. }
  225. mProjMatrix = Matrix4::ZERO;
  226. mProjMatrix[0][0] = A;
  227. mProjMatrix[0][3] = C;
  228. mProjMatrix[1][1] = B;
  229. mProjMatrix[1][3] = D;
  230. mProjMatrix[2][2] = q;
  231. mProjMatrix[2][3] = qn;
  232. mProjMatrix[3][3] = 1;
  233. }
  234. }
  235. ct::RenderAPI* renderAPI = ct::RenderAPI::instancePtr();
  236. renderAPI->convertProjectionMatrix(mProjMatrix, mProjMatrixRS);
  237. mProjMatrixInv = mProjMatrix.inverse();
  238. mProjMatrixRSInv = mProjMatrixRS.inverse();
  239. // Calculate bounding box (local)
  240. // Box is from 0, down -Z, max dimensions as determined from far plane
  241. // If infinite view frustum just pick a far value
  242. float farDist = (mFarDist == 0) ? 100000 : mFarDist;
  243. // Near plane bounds
  244. Vector3 min(left, bottom, -farDist);
  245. Vector3 max(right, top, 0);
  246. if (mCustomProjMatrix)
  247. {
  248. // Some custom projection matrices can have unusual inverted settings
  249. // So make sure the AABB is the right way around to start with
  250. Vector3 tmp = min;
  251. min.floor(max);
  252. max.ceil(tmp);
  253. }
  254. if (mProjType == PT_PERSPECTIVE)
  255. {
  256. // Merge with far plane bounds
  257. float radio = farDist / mNearDist;
  258. min.floor(Vector3(left * radio, bottom * radio, -farDist));
  259. max.ceil(Vector3(right * radio, top * radio, 0));
  260. }
  261. mBoundingBox.setExtents(min, max);
  262. mRecalcFrustum = false;
  263. mRecalcFrustumPlanes = true;
  264. }
  265. }
  266. bool CameraBase::isFrustumOutOfDate() const
  267. {
  268. return mRecalcFrustum;
  269. }
  270. void CameraBase::updateView() const
  271. {
  272. if (!mCustomViewMatrix && mRecalcView)
  273. {
  274. mViewMatrix.makeView(mPosition, mRotation);
  275. mViewMatrixInv = mViewMatrix.inverseAffine();
  276. mRecalcView = false;
  277. }
  278. }
  279. void CameraBase::updateFrustumPlanes() const
  280. {
  281. updateFrustum();
  282. if (mRecalcFrustumPlanes)
  283. {
  284. mFrustum = ConvexVolume(mProjMatrix);
  285. mRecalcFrustumPlanes = false;
  286. }
  287. }
  288. float CameraBase::getAspectRatio() const
  289. {
  290. return mAspect;
  291. }
  292. void CameraBase::setAspectRatio(float r)
  293. {
  294. mAspect = r;
  295. invalidateFrustum();
  296. _markCoreDirty();
  297. }
  298. const AABox& CameraBase::getBoundingBox() const
  299. {
  300. updateFrustum();
  301. return mBoundingBox;
  302. }
  303. void CameraBase::setProjectionType(ProjectionType pt)
  304. {
  305. mProjType = pt;
  306. invalidateFrustum();
  307. _markCoreDirty();
  308. }
  309. ProjectionType CameraBase::getProjectionType() const
  310. {
  311. return mProjType;
  312. }
  313. void CameraBase::setCustomViewMatrix(bool enable, const Matrix4& viewMatrix)
  314. {
  315. mCustomViewMatrix = enable;
  316. if (enable)
  317. {
  318. BS_ASSERT(viewMatrix.isAffine());
  319. mViewMatrix = viewMatrix;
  320. mViewMatrixInv = mViewMatrix.inverseAffine();
  321. }
  322. _markCoreDirty();
  323. }
  324. void CameraBase::setCustomProjectionMatrix(bool enable, const Matrix4& projMatrix)
  325. {
  326. mCustomProjMatrix = enable;
  327. if (enable)
  328. mProjMatrix = projMatrix;
  329. invalidateFrustum();
  330. _markCoreDirty();
  331. }
  332. void CameraBase::setOrthoWindow(float w, float h)
  333. {
  334. mOrthoHeight = h;
  335. mAspect = w / h;
  336. invalidateFrustum();
  337. _markCoreDirty();
  338. }
  339. void CameraBase::setOrthoWindowHeight(float h)
  340. {
  341. mOrthoHeight = h;
  342. invalidateFrustum();
  343. _markCoreDirty();
  344. }
  345. void CameraBase::setOrthoWindowWidth(float w)
  346. {
  347. mOrthoHeight = w / mAspect;
  348. invalidateFrustum();
  349. _markCoreDirty();
  350. }
  351. float CameraBase::getOrthoWindowHeight() const
  352. {
  353. return mOrthoHeight;
  354. }
  355. float CameraBase::getOrthoWindowWidth() const
  356. {
  357. return mOrthoHeight * mAspect;
  358. }
  359. void CameraBase::setFrustumExtents(float left, float right, float top, float bottom)
  360. {
  361. mFrustumExtentsManuallySet = true;
  362. mLeft = left;
  363. mRight = right;
  364. mTop = top;
  365. mBottom = bottom;
  366. invalidateFrustum();
  367. _markCoreDirty();
  368. }
  369. void CameraBase::resetFrustumExtents()
  370. {
  371. mFrustumExtentsManuallySet = false;
  372. invalidateFrustum();
  373. _markCoreDirty();
  374. }
  375. void CameraBase::getFrustumExtents(float& outleft, float& outright, float& outtop, float& outbottom) const
  376. {
  377. updateFrustum();
  378. outleft = mLeft;
  379. outright = mRight;
  380. outtop = mTop;
  381. outbottom = mBottom;
  382. }
  383. void CameraBase::setFlag(const CameraFlag& flag, bool enable)
  384. {
  385. if (enable)
  386. mCameraFlags.set(flag);
  387. else
  388. mCameraFlags.unset(flag);
  389. _markCoreDirty();
  390. }
  391. void CameraBase::setPosition(const Vector3& position)
  392. {
  393. mPosition = position;
  394. mRecalcView = true;
  395. _markCoreDirty(CameraDirtyFlag::Transform);
  396. }
  397. void CameraBase::setRotation(const Quaternion& rotation)
  398. {
  399. mRotation = rotation;
  400. mRecalcView = true;
  401. _markCoreDirty(CameraDirtyFlag::Transform);
  402. }
  403. void CameraBase::invalidateFrustum() const
  404. {
  405. mRecalcFrustum = true;
  406. mRecalcFrustumPlanes = true;
  407. }
  408. Vector2I CameraBase::worldToScreenPoint(const Vector3& worldPoint) const
  409. {
  410. Vector2 ndcPoint = worldToNdcPoint(worldPoint);
  411. return ndcToScreenPoint(ndcPoint);
  412. }
  413. Vector2 CameraBase::worldToNdcPoint(const Vector3& worldPoint) const
  414. {
  415. Vector3 viewPoint = worldToViewPoint(worldPoint);
  416. return viewToNdcPoint(viewPoint);
  417. }
  418. Vector3 CameraBase::worldToViewPoint(const Vector3& worldPoint) const
  419. {
  420. return getViewMatrix().multiplyAffine(worldPoint);
  421. }
  422. Vector3 CameraBase::screenToWorldPoint(const Vector2I& screenPoint, float depth) const
  423. {
  424. Vector2 ndcPoint = screenToNdcPoint(screenPoint);
  425. return ndcToWorldPoint(ndcPoint, depth);
  426. }
  427. Vector3 CameraBase::screenToWorldPointDeviceDepth(const Vector2I& screenPoint, float deviceDepth) const
  428. {
  429. Vector2 ndcPoint = screenToNdcPoint(screenPoint);
  430. Vector4 worldPoint(ndcPoint.x, ndcPoint.y, deviceDepth, 1.0f);
  431. worldPoint = getProjectionMatrixRS().inverse().multiply(worldPoint);
  432. Vector3 worldPoint3D;
  433. if (Math::abs(worldPoint.w) > 1e-7f)
  434. {
  435. float invW = 1.0f / worldPoint.w;
  436. worldPoint3D.x = worldPoint.x * invW;
  437. worldPoint3D.y = worldPoint.y * invW;
  438. worldPoint3D.z = worldPoint.z * invW;
  439. }
  440. return viewToWorldPoint(worldPoint3D);
  441. }
  442. Vector3 CameraBase::screenToViewPoint(const Vector2I& screenPoint, float depth) const
  443. {
  444. Vector2 ndcPoint = screenToNdcPoint(screenPoint);
  445. return ndcToViewPoint(ndcPoint, depth);
  446. }
  447. Vector2 CameraBase::screenToNdcPoint(const Vector2I& screenPoint) const
  448. {
  449. Rect2I viewport = getViewportRect();
  450. Vector2 ndcPoint;
  451. ndcPoint.x = (float)(((screenPoint.x - viewport.x) / (float)viewport.width) * 2.0f - 1.0f);
  452. ndcPoint.y = (float)((1.0f - ((screenPoint.y - viewport.y) / (float)viewport.height)) * 2.0f - 1.0f);
  453. return ndcPoint;
  454. }
  455. Vector3 CameraBase::viewToWorldPoint(const Vector3& viewPoint) const
  456. {
  457. return getViewMatrix().inverseAffine().multiplyAffine(viewPoint);
  458. }
  459. Vector2I CameraBase::viewToScreenPoint(const Vector3& viewPoint) const
  460. {
  461. Vector2 ndcPoint = viewToNdcPoint(viewPoint);
  462. return ndcToScreenPoint(ndcPoint);
  463. }
  464. Vector2 CameraBase::viewToNdcPoint(const Vector3& viewPoint) const
  465. {
  466. Vector3 projPoint = projectPoint(viewPoint);
  467. return Vector2(projPoint.x, projPoint.y);
  468. }
  469. Vector3 CameraBase::ndcToWorldPoint(const Vector2& ndcPoint, float depth) const
  470. {
  471. Vector3 viewPoint = ndcToViewPoint(ndcPoint, depth);
  472. return viewToWorldPoint(viewPoint);
  473. }
  474. Vector3 CameraBase::ndcToViewPoint(const Vector2& ndcPoint, float depth) const
  475. {
  476. return unprojectPoint(Vector3(ndcPoint.x, ndcPoint.y, depth));
  477. }
  478. Vector2I CameraBase::ndcToScreenPoint(const Vector2& ndcPoint) const
  479. {
  480. Rect2I viewport = getViewportRect();
  481. Vector2I screenPoint;
  482. screenPoint.x = Math::roundToInt(viewport.x + ((ndcPoint.x + 1.0f) * 0.5f) * viewport.width);
  483. screenPoint.y = Math::roundToInt(viewport.y + (1.0f - (ndcPoint.y + 1.0f) * 0.5f) * viewport.height);
  484. return screenPoint;
  485. }
  486. Ray CameraBase::screenPointToRay(const Vector2I& screenPoint) const
  487. {
  488. Vector2 ndcPoint = screenToNdcPoint(screenPoint);
  489. Vector3 near = unprojectPoint(Vector3(ndcPoint.x, ndcPoint.y, mNearDist));
  490. Vector3 far = unprojectPoint(Vector3(ndcPoint.x, ndcPoint.y, mNearDist + 1.0f));
  491. Ray ray(near, Vector3::normalize(far - near));
  492. ray.transformAffine(getViewMatrix().inverseAffine());
  493. return ray;
  494. }
  495. Vector3 CameraBase::projectPoint(const Vector3& point) const
  496. {
  497. Vector4 projPoint4(point.x, point.y, point.z, 1.0f);
  498. projPoint4 = getProjectionMatrixRS().multiply(projPoint4);
  499. if (Math::abs(projPoint4.w) > 1e-7f)
  500. {
  501. float invW = 1.0f / projPoint4.w;
  502. projPoint4.x *= invW;
  503. projPoint4.y *= invW;
  504. projPoint4.z *= invW;
  505. }
  506. else
  507. {
  508. projPoint4.x = 0.0f;
  509. projPoint4.y = 0.0f;
  510. projPoint4.z = 0.0f;
  511. }
  512. return Vector3(projPoint4.x, projPoint4.y, projPoint4.z);
  513. }
  514. Vector3 CameraBase::unprojectPoint(const Vector3& point) const
  515. {
  516. // Point.z is expected to be in view space, so we need to do some extra work to get the proper coordinates
  517. // (as opposed to if point.z was in device coordinates, in which case we could just inverse project)
  518. // Get world position for a point near the far plane (0.95f)
  519. Vector4 farAwayPoint(point.x, point.y, 0.95f, 1.0f);
  520. farAwayPoint = getProjectionMatrixRS().inverse().multiply(farAwayPoint);
  521. // Can't proceed if w is too small
  522. if (Math::abs(farAwayPoint.w) > 1e-7f)
  523. {
  524. // Perspective divide, to get the values that make sense in 3D space
  525. float invW = 1.0f / farAwayPoint.w;
  526. Vector3 farAwayPoint3D;
  527. farAwayPoint3D.x = farAwayPoint.x * invW;
  528. farAwayPoint3D.y = farAwayPoint.y * invW;
  529. farAwayPoint3D.z = farAwayPoint.z * invW;
  530. // Find the distance to the far point along the camera's viewing axis
  531. float distAlongZ = farAwayPoint3D.dot(-Vector3::UNIT_Z);
  532. // Do nothing if point is behind the camera
  533. if (distAlongZ >= 0.0f)
  534. {
  535. if (mProjType == PT_PERSPECTIVE)
  536. {
  537. // Direction from origin to our point
  538. Vector3 dir = farAwayPoint3D; // Camera is at (0, 0, 0) so it's the same vector
  539. // Our view space depth (point.z) is distance along the camera's viewing axis. Since our direction
  540. // vector is not parallel to the viewing axis, instead of normalizing it with its own length, we
  541. // "normalize" with the length projected along the camera's viewing axis.
  542. dir /= distAlongZ;
  543. // And now we just find the final position along the direction
  544. return dir * point.z;
  545. }
  546. else // Ortographic
  547. {
  548. // Depth difference between our arbitrary point and actual depth
  549. float depthDiff = distAlongZ - point.z;
  550. // Depth difference along viewing direction
  551. Vector3 depthDiffVec = depthDiff * -Vector3::UNIT_Z;
  552. // Return point that is depthDiff closer than our arbitrary point
  553. return farAwayPoint3D - depthDiffVec;
  554. }
  555. }
  556. }
  557. return Vector3(0.0f, 0.0f, 0.0f);
  558. }
  559. Camera::Camera(SPtr<RenderTarget> target, float left, float top, float width, float height)
  560. :mMain(false), mLastUpdateHash(0)
  561. {
  562. if (target != nullptr)
  563. target->blockUntilCoreInitialized();
  564. mViewport = Viewport::create(target, left, top, width, height);
  565. }
  566. SPtr<ct::Camera> Camera::getCore() const
  567. {
  568. return std::static_pointer_cast<ct::Camera>(mCoreSpecific);
  569. }
  570. SPtr<Camera> Camera::create(SPtr<RenderTarget> target, float left, float top, float width, float height)
  571. {
  572. Camera* handler = new (bs_alloc<Camera>()) Camera(target, left, top, width, height);
  573. SPtr<Camera> handlerPtr = bs_core_ptr<Camera>(handler);
  574. handlerPtr->_setThisPtr(handlerPtr);
  575. handlerPtr->initialize();
  576. return handlerPtr;
  577. }
  578. SPtr<Camera> Camera::createEmpty()
  579. {
  580. Camera* handler = new (bs_alloc<Camera>()) Camera();
  581. SPtr<Camera> handlerPtr = bs_core_ptr<Camera>(handler);
  582. handlerPtr->_setThisPtr(handlerPtr);
  583. return handlerPtr;
  584. }
  585. SPtr<ct::CoreObject> Camera::createCore() const
  586. {
  587. ct::Camera* handler = new (bs_alloc<ct::Camera>()) ct::Camera(mViewport->getCore());
  588. SPtr<ct::Camera> handlerPtr = bs_shared_ptr<ct::Camera>(handler);
  589. handlerPtr->_setThisPtr(handlerPtr);
  590. return handlerPtr;
  591. }
  592. Rect2I Camera::getViewportRect() const
  593. {
  594. return mViewport->getArea();
  595. }
  596. CoreSyncData Camera::syncToCore(FrameAlloc* allocator)
  597. {
  598. UINT32 dirtyFlag = getCoreDirtyFlags();
  599. UINT32 size = 0;
  600. size += rttiGetElemSize(dirtyFlag);
  601. size += rttiGetElemSize(mPosition);
  602. size += rttiGetElemSize(mRotation);
  603. UINT32 ppSize = 0;
  604. if (dirtyFlag != (UINT32)CameraDirtyFlag::Transform)
  605. {
  606. size += rttiGetElemSize(mLayers);
  607. size += rttiGetElemSize(mProjType);
  608. size += rttiGetElemSize(mHorzFOV);
  609. size += rttiGetElemSize(mFarDist);
  610. size += rttiGetElemSize(mNearDist);
  611. size += rttiGetElemSize(mAspect);
  612. size += rttiGetElemSize(mOrthoHeight);
  613. size += rttiGetElemSize(mPriority);
  614. size += rttiGetElemSize(mCustomViewMatrix);
  615. size += rttiGetElemSize(mCustomProjMatrix);
  616. size += rttiGetElemSize(mFrustumExtentsManuallySet);
  617. size += rttiGetElemSize(mCameraFlags);
  618. size += rttiGetElemSize(mIsActive);
  619. size += rttiGetElemSize(mMSAA);
  620. size += sizeof(UINT32);
  621. if(mPPSettings != nullptr)
  622. {
  623. mPPSettings->_getSyncData(nullptr, ppSize);
  624. size += ppSize;
  625. }
  626. }
  627. UINT8* buffer = allocator->alloc(size);
  628. char* dataPtr = (char*)buffer;
  629. dataPtr = rttiWriteElem(dirtyFlag, dataPtr);
  630. dataPtr = rttiWriteElem(mPosition, dataPtr);
  631. dataPtr = rttiWriteElem(mRotation, dataPtr);
  632. if (dirtyFlag != (UINT32)CameraDirtyFlag::Transform)
  633. {
  634. dataPtr = rttiWriteElem(mLayers, dataPtr);
  635. dataPtr = rttiWriteElem(mProjType, dataPtr);
  636. dataPtr = rttiWriteElem(mHorzFOV, dataPtr);
  637. dataPtr = rttiWriteElem(mFarDist, dataPtr);
  638. dataPtr = rttiWriteElem(mNearDist, dataPtr);
  639. dataPtr = rttiWriteElem(mAspect, dataPtr);
  640. dataPtr = rttiWriteElem(mOrthoHeight, dataPtr);
  641. dataPtr = rttiWriteElem(mPriority, dataPtr);
  642. dataPtr = rttiWriteElem(mCustomViewMatrix, dataPtr);
  643. dataPtr = rttiWriteElem(mCustomProjMatrix, dataPtr);
  644. dataPtr = rttiWriteElem(mFrustumExtentsManuallySet, dataPtr);
  645. dataPtr = rttiWriteElem(mCameraFlags, dataPtr);
  646. dataPtr = rttiWriteElem(mIsActive, dataPtr);
  647. dataPtr = rttiWriteElem(mMSAA, dataPtr);
  648. dataPtr = rttiWriteElem(ppSize, dataPtr);
  649. if(mPPSettings != nullptr)
  650. mPPSettings->_getSyncData((UINT8*)dataPtr, ppSize);
  651. dataPtr += ppSize;
  652. }
  653. return CoreSyncData(buffer, size);
  654. }
  655. void Camera::getCoreDependencies(Vector<CoreObject*>& dependencies)
  656. {
  657. dependencies.push_back(mViewport.get());
  658. }
  659. void Camera::_markCoreDirty(CameraDirtyFlag flag)
  660. {
  661. markCoreDirty((UINT32)flag);
  662. }
  663. RTTITypeBase* Camera::getRTTIStatic()
  664. {
  665. return CameraRTTI::instance();
  666. }
  667. RTTITypeBase* Camera::getRTTI() const
  668. {
  669. return Camera::getRTTIStatic();
  670. }
  671. namespace ct
  672. {
  673. Camera::~Camera()
  674. {
  675. RendererManager::instance().getActive()->notifyCameraRemoved(this);
  676. }
  677. Camera::Camera(SPtr<RenderTarget> target, float left, float top, float width, float height)
  678. {
  679. mViewport = Viewport::create(target, left, top, width, height);
  680. }
  681. Camera::Camera(const SPtr<Viewport>& viewport)
  682. {
  683. mViewport = viewport;
  684. }
  685. void Camera::initialize()
  686. {
  687. RendererManager::instance().getActive()->notifyCameraAdded(this);
  688. CoreObject::initialize();
  689. }
  690. Rect2I Camera::getViewportRect() const
  691. {
  692. return mViewport->getArea();
  693. }
  694. void Camera::syncToCore(const CoreSyncData& data)
  695. {
  696. char* dataPtr = (char*)data.getBuffer();
  697. CameraDirtyFlag dirtyFlag;
  698. dataPtr = rttiReadElem(dirtyFlag, dataPtr);
  699. dataPtr = rttiReadElem(mPosition, dataPtr);
  700. dataPtr = rttiReadElem(mRotation, dataPtr);
  701. mRecalcFrustum = true;
  702. mRecalcFrustumPlanes = true;
  703. mRecalcView = true;
  704. if (dirtyFlag != CameraDirtyFlag::Transform)
  705. {
  706. dataPtr = rttiReadElem(mLayers, dataPtr);
  707. dataPtr = rttiReadElem(mProjType, dataPtr);
  708. dataPtr = rttiReadElem(mHorzFOV, dataPtr);
  709. dataPtr = rttiReadElem(mFarDist, dataPtr);
  710. dataPtr = rttiReadElem(mNearDist, dataPtr);
  711. dataPtr = rttiReadElem(mAspect, dataPtr);
  712. dataPtr = rttiReadElem(mOrthoHeight, dataPtr);
  713. dataPtr = rttiReadElem(mPriority, dataPtr);
  714. dataPtr = rttiReadElem(mCustomViewMatrix, dataPtr);
  715. dataPtr = rttiReadElem(mCustomProjMatrix, dataPtr);
  716. dataPtr = rttiReadElem(mFrustumExtentsManuallySet, dataPtr);
  717. dataPtr = rttiReadElem(mCameraFlags, dataPtr);
  718. dataPtr = rttiReadElem(mIsActive, dataPtr);
  719. dataPtr = rttiReadElem(mMSAA, dataPtr);
  720. UINT32 ppSize = 0;
  721. dataPtr = rttiReadElem(ppSize, dataPtr);
  722. if(ppSize > 0)
  723. {
  724. if (mPPSettings == nullptr)
  725. mPPSettings = RendererManager::instance().getActive()->createPostProcessSettings();
  726. mPPSettings->_setSyncData((UINT8*)dataPtr, ppSize);
  727. dataPtr += ppSize;
  728. }
  729. }
  730. RendererManager::instance().getActive()->notifyCameraUpdated(this, (UINT32)dirtyFlag);
  731. }
  732. }
  733. }