BsTaskScheduler.cpp 4.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192
  1. #include "BsTaskScheduler.h"
  2. #include "BsThreadPool.h"
  3. namespace BansheeEngine
  4. {
  5. Task::Task(const PrivatelyConstruct& dummy, const String& name, std::function<void()> taskWorker,
  6. TaskPriority priority, TaskPtr dependency)
  7. :mName(name), mState(0), mPriority(priority), mTaskId(0),
  8. mTaskDependency(dependency), mTaskWorker(taskWorker), mParent(nullptr)
  9. {
  10. }
  11. TaskPtr Task::create(const String& name, std::function<void()> taskWorker, TaskPriority priority, TaskPtr dependency)
  12. {
  13. return bs_shared_ptr<Task>(PrivatelyConstruct(), name, taskWorker, priority, dependency);
  14. }
  15. bool Task::isComplete() const
  16. {
  17. return mState.load() == 2;
  18. }
  19. bool Task::isCanceled() const
  20. {
  21. return mState.load() == 3;
  22. }
  23. void Task::wait()
  24. {
  25. mParent->waitUntilComplete(this);
  26. }
  27. void Task::cancel()
  28. {
  29. mState.store(3);
  30. }
  31. TaskScheduler::TaskScheduler()
  32. :mMaxActiveTasks(0), mNumActiveTasks(0), mNextTaskId(0), mShutdown(false),
  33. mTaskQueue(&TaskScheduler::taskCompare)
  34. {
  35. mMaxActiveTasks = BS_THREAD_HARDWARE_CONCURRENCY;
  36. mTaskSchedulerThread = ThreadPool::instance().run("TaskScheduler", std::bind(&TaskScheduler::runMain, this));
  37. }
  38. TaskScheduler::~TaskScheduler()
  39. {
  40. // Wait until all tasks complete
  41. BS_LOCK_MUTEX_NAMED(mActiveTaskMutex, activeTaskLock);
  42. while (mActiveTasks.size() > 0)
  43. {
  44. TaskPtr task = mActiveTasks[0];
  45. activeTaskLock.unlock();
  46. task->wait();
  47. activeTaskLock.lock();
  48. }
  49. // Start shutdown of the main queue worker and wait until it exits
  50. {
  51. BS_LOCK_MUTEX(mReadyMutex);
  52. mShutdown = true;
  53. }
  54. BS_THREAD_NOTIFY_ONE(mTaskReadyCond);
  55. mTaskSchedulerThread.blockUntilComplete();
  56. }
  57. void TaskScheduler::addTask(const TaskPtr& task)
  58. {
  59. BS_LOCK_MUTEX(mReadyMutex);
  60. task->mParent = this;
  61. task->mTaskId = mNextTaskId++;
  62. mTaskQueue.insert(task);
  63. // Wake main scheduler thread
  64. BS_THREAD_NOTIFY_ONE(mTaskReadyCond);
  65. }
  66. void TaskScheduler::addWorker()
  67. {
  68. BS_LOCK_MUTEX(mReadyMutex);
  69. mMaxActiveTasks++;
  70. // A spot freed up, queue new tasks on main scheduler thread if they exist
  71. BS_THREAD_NOTIFY_ONE(mTaskReadyCond);
  72. }
  73. void TaskScheduler::removeWorker()
  74. {
  75. BS_LOCK_MUTEX(mReadyMutex);
  76. if(mMaxActiveTasks > 0)
  77. mMaxActiveTasks--;
  78. }
  79. void TaskScheduler::runMain()
  80. {
  81. while(true)
  82. {
  83. BS_LOCK_MUTEX_NAMED(mReadyMutex, lock);
  84. while((mTaskQueue.size() == 0 || mNumActiveTasks == mMaxActiveTasks) && !mShutdown)
  85. BS_THREAD_WAIT(mTaskReadyCond, mReadyMutex, lock);
  86. if(mShutdown)
  87. break;
  88. for(UINT32 i = 0; (i < mTaskQueue.size()) && (mNumActiveTasks < mMaxActiveTasks); i++)
  89. {
  90. TaskPtr curTask = *mTaskQueue.begin();
  91. mTaskQueue.erase(mTaskQueue.begin());
  92. if(curTask->isCanceled())
  93. continue;
  94. if(curTask->mTaskDependency != nullptr && !curTask->mTaskDependency->isComplete())
  95. continue;
  96. BS_LOCK_MUTEX(mActiveTaskMutex);
  97. {
  98. curTask->mState.store(1);
  99. mActiveTasks.push_back(curTask);
  100. mNumActiveTasks++;
  101. }
  102. ThreadPool::instance().run(curTask->mName, std::bind(&TaskScheduler::runTask, this, curTask));
  103. }
  104. }
  105. }
  106. void TaskScheduler::runTask(const TaskPtr& task)
  107. {
  108. task->mTaskWorker();
  109. {
  110. BS_LOCK_MUTEX(mActiveTaskMutex);
  111. auto findIter = std::find(mActiveTasks.begin(), mActiveTasks.end(), task);
  112. if (findIter != mActiveTasks.end())
  113. mActiveTasks.erase(findIter);
  114. }
  115. {
  116. BS_LOCK_MUTEX(mCompleteMutex);
  117. task->mState.store(2);
  118. BS_THREAD_NOTIFY_ALL(mTaskCompleteCond);
  119. }
  120. // Possibly this task was someones dependency, so wake the main scheduler thread
  121. BS_THREAD_NOTIFY_ONE(mTaskReadyCond);
  122. }
  123. void TaskScheduler::waitUntilComplete(const Task* task)
  124. {
  125. if(task->isCanceled())
  126. return;
  127. {
  128. BS_LOCK_MUTEX_NAMED(mCompleteMutex, lock);
  129. while(!task->isComplete())
  130. {
  131. addWorker();
  132. BS_THREAD_WAIT(mTaskCompleteCond, mCompleteMutex, lock);
  133. removeWorker();
  134. }
  135. }
  136. }
  137. bool TaskScheduler::taskCompare(const TaskPtr& lhs, const TaskPtr& rhs)
  138. {
  139. // If one tasks priority is higher, that one goes first
  140. if(lhs->mPriority > rhs->mPriority)
  141. return true;
  142. // Otherwise we go by smaller id, as that task was queued earlier than the other
  143. if(lhs->mTaskId < rhs->mTaskId)
  144. return true;
  145. BS_EXCEPT(InternalErrorException, "Found two identical tasks.");
  146. }
  147. }