Main.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575
  1. #include <windows.h>
  2. #include "BsApplication.h"
  3. #include "BsImporter.h"
  4. #include "BsGpuProgramImportOptions.h"
  5. #include "BsTextureImportOptions.h"
  6. #include "BsMaterial.h"
  7. #include "BsShader.h"
  8. #include "BsTechnique.h"
  9. #include "BsPass.h"
  10. #include "BsCoreThreadAccessor.h"
  11. #include "BsApplication.h"
  12. #include "BsVirtualInput.h"
  13. #include "BsCamera.h"
  14. #include "BsRenderable.h"
  15. #include "BsGUIWidget.h"
  16. #include "BsGUIArea.h"
  17. #include "BsGUILayoutX.h"
  18. #include "BsGUILayoutY.h"
  19. #include "BsGUISpace.h"
  20. #include "BsGUILabel.h"
  21. #include "BsGUIButton.h"
  22. #include "BsGUIListBox.h"
  23. #include "BsBuiltinResources.h"
  24. #include "BsRTTIType.h"
  25. #include "BsHString.h"
  26. #include "BsRenderWindow.h"
  27. #include "BsSceneObject.h"
  28. #include "BsCoreThread.h"
  29. #include "BsProfilerOverlay.h"
  30. #include "BsCoreRenderer.h"
  31. #include "BsResources.h"
  32. #include "CameraFlyer.h"
  33. namespace BansheeEngine
  34. {
  35. UINT32 windowResWidth = 1280;
  36. UINT32 windowResHeight = 720;
  37. /**
  38. * Imports all of our assets and prepares GameObject that handle the example logic.
  39. */
  40. void setUpExample();
  41. /**
  42. * Import mesh/texture/GPU programs used by the example.
  43. */
  44. void importAssets(HMesh& model, HTexture& texture, HGpuProgram& fragmentGPUProg, HGpuProgram& vertexGPUProg);
  45. /**
  46. * Create a material used by our example model.
  47. */
  48. HMaterial createMaterial(const HTexture& texture, const HGpuProgram& vertexGPUProg, const HGpuProgram& fragmentGPUProg);
  49. /**
  50. * Set up example scene objects.
  51. */
  52. void setUp3DScene(const HMesh& mesh, const HMaterial& material);
  53. /**
  54. * Set up example GUI.
  55. */
  56. void setUpGUI();
  57. /**
  58. * Set up input configuration and callbacks.
  59. */
  60. void setUpInput();
  61. /**
  62. * Toggles the primary window between full-screen and windowed mode.
  63. */
  64. void toggleFullscreen();
  65. /**
  66. * Called whenever the main render window is resized.
  67. */
  68. void renderWindowResized();
  69. /**
  70. * Called when the selected video mode changes in the video mode list box.
  71. */
  72. void videoModeChanged(UINT32 idx);
  73. /**
  74. * Triggered whenever a virtual button is released.
  75. */
  76. void buttonUp(const VirtualButton& button, UINT32 deviceIdx);
  77. }
  78. using namespace BansheeEngine;
  79. /**
  80. * Main entry point into the application.
  81. */
  82. int CALLBACK WinMain(
  83. _In_ HINSTANCE hInstance,
  84. _In_ HINSTANCE hPrevInstance,
  85. _In_ LPSTR lpCmdLine,
  86. _In_ int nCmdShow
  87. )
  88. {
  89. // Descriptor used for initializing the primary application window.
  90. RENDER_WINDOW_DESC renderWindowDesc;
  91. renderWindowDesc.videoMode = VideoMode(windowResWidth, windowResHeight);
  92. renderWindowDesc.title = "Banshee Example App";
  93. renderWindowDesc.fullscreen = false;
  94. // Initializes the application with primary window defined as above and DirectX 11 render system.
  95. // You may use other render systems than DirectX 11, however this example for simplicity only uses DirectX 11.
  96. // If you wanted other render systems you would need to create separate shaders for them and import them
  97. // along with (or replace) the DX11 ones.
  98. Application::startUp(renderWindowDesc, RenderSystemPlugin::DX11);
  99. // Imports all of ours assets and prepares GameObject that handle the example logic.
  100. setUpExample();
  101. // Runs the main loop that does most of the work. This method will exit when user closes the main
  102. // window or exits in some other way.
  103. Application::instance().runMainLoop();
  104. Application::shutDown();
  105. return 0;
  106. }
  107. namespace BansheeEngine
  108. {
  109. Path exampleModelPath = "..\\..\\..\\..\\Data\\Examples\\Dragon.fbx";
  110. Path exampleTexturePath = "..\\..\\..\\..\\Data\\Examples\\Dragon.tga";
  111. Path exampleFragmentShaderPath = "..\\..\\..\\..\\Data\\Examples\\example_fs.gpuprog";
  112. Path exampleVertexShaderPath = "..\\..\\..\\..\\Data\\Examples\\example_vs.gpuprog";
  113. GUIButton* toggleFullscreenButton = nullptr;
  114. bool fullscreen = false;
  115. const VideoMode* selectedVideoMode = nullptr;
  116. Vector<const VideoMode*> videoModes;
  117. HCamera sceneCamera;
  118. HProfilerOverlay profilerOverlay;
  119. VirtualButton toggleCPUProfilerBtn;
  120. VirtualButton toggleGPUProfilerBtn;
  121. bool cpuProfilerActive = false;
  122. bool gpuProfilerActive = false;
  123. void setUpExample()
  124. {
  125. HMesh exampleModel;
  126. HTexture exampleTexture;
  127. HGpuProgram exampleFragmentGPUProg;
  128. HGpuProgram exampleVertexGPUProg;
  129. importAssets(exampleModel, exampleTexture, exampleFragmentGPUProg, exampleVertexGPUProg);
  130. HMaterial exampleMaterial = createMaterial(exampleTexture, exampleVertexGPUProg, exampleFragmentGPUProg);
  131. setUp3DScene(exampleModel, exampleMaterial);
  132. setUpGUI();
  133. setUpInput();
  134. }
  135. void importAssets(HMesh& model, HTexture& texture, HGpuProgram& fragmentGPUProg, HGpuProgram& vertexGPUProg)
  136. {
  137. // Import mesh, texture and shader from the disk. In a normal application you would want to save the imported assets
  138. // so next time the application is ran you can just load them directly. This can be done with Resources::save/load.
  139. // Import an FBX mesh.
  140. model = Importer::instance().import<Mesh>(exampleModelPath);
  141. // When importing you may specify optional import options that control how is the asset imported.
  142. ImportOptionsPtr textureImportOptions = Importer::instance().createImportOptions(exampleTexturePath);
  143. // rtti_is_of_type checks if the import options are of valid type, in case the provided path is pointing to a non-texture resource.
  144. // This is similar to dynamic_cast but uses Banshee internal RTTI system for type checking.
  145. if (rtti_is_of_type<TextureImportOptions>(textureImportOptions))
  146. {
  147. TextureImportOptions* importOptions = static_cast<TextureImportOptions*>(textureImportOptions.get());
  148. // We want maximum number of mipmaps to be generated
  149. importOptions->setGenerateMipmaps(true);
  150. }
  151. // Import texture with specified import options
  152. texture = Importer::instance().import<Texture>(exampleTexturePath, textureImportOptions);
  153. // Create import options for fragment GPU program
  154. ImportOptionsPtr gpuProgImportOptions = Importer::instance().createImportOptions(exampleFragmentShaderPath);
  155. if (rtti_is_of_type<GpuProgramImportOptions>(gpuProgImportOptions))
  156. {
  157. GpuProgramImportOptions* importOptions = static_cast<GpuProgramImportOptions*>(gpuProgImportOptions.get());
  158. // Name of the entry function in the GPU program
  159. importOptions->setEntryPoint("ps_main");
  160. // Language the GPU program is written in. Can only be hlsl for DX11
  161. importOptions->setLanguage("hlsl");
  162. // GPU program profile specifying what feature-set the shader code uses.
  163. importOptions->setProfile(GPP_FS_4_0);
  164. // Type of the shader.
  165. importOptions->setType(GPT_FRAGMENT_PROGRAM);
  166. }
  167. // Import fragment GPU program
  168. fragmentGPUProg = Importer::instance().import<GpuProgram>(exampleFragmentShaderPath, gpuProgImportOptions);
  169. // Create import options for vertex GPU program. Similar as above.
  170. gpuProgImportOptions = Importer::instance().createImportOptions(exampleVertexShaderPath);
  171. if (rtti_is_of_type<GpuProgramImportOptions>(gpuProgImportOptions))
  172. {
  173. GpuProgramImportOptions* importOptions = static_cast<GpuProgramImportOptions*>(gpuProgImportOptions.get());
  174. importOptions->setEntryPoint("vs_main");
  175. importOptions->setLanguage("hlsl");
  176. importOptions->setProfile(GPP_VS_4_0);
  177. importOptions->setType(GPT_VERTEX_PROGRAM);
  178. }
  179. // Import vertex GPU program
  180. vertexGPUProg = Importer::instance().import<GpuProgram>(exampleVertexShaderPath, gpuProgImportOptions);
  181. }
  182. HMaterial createMaterial(const HTexture& texture, const HGpuProgram& vertexGPUProg, const HGpuProgram& fragmentGPUProg)
  183. {
  184. /************************************************************************/
  185. /* CREATE SHADER */
  186. /************************************************************************/
  187. // Create a new pass for a shader technique. Each technique can have multiple passes that allow you to render the same
  188. // object multiple times using different GPU programs.
  189. PASS_DESC passDesc;
  190. passDesc.vertexProgram = vertexGPUProg;
  191. passDesc.fragmentProgram = fragmentGPUProg;
  192. PassPtr pass = Pass::create(passDesc);
  193. // Create a shader technique. Shader can have many different techniques and the renderer will automatically
  194. // use the most appropriate technique depending on the active renderer and render system. e.g. you can have different
  195. // techniques using HLSL9, HLSL11 and GLSL GPU programs for DirectX 9, DirectX 11 and OpenGL render systems respectively.
  196. TechniquePtr technique = Technique::create(RenderSystemDX11, RendererDefault, { pass });
  197. // Set up shader parameters and renderer semantics.
  198. // Renderer semantics allow our renderer to automatically populate certain shader parameters (e.g. a world view projection matrix).
  199. // These semantics are purely optional and depend on the renderer used. Certain renderers expect certain semantics to be set up
  200. // otherwise they will not render the objects. You always have the option to populate all the parameters manually, but in this example
  201. // we go with the semantics route as it allows for a "set up and forget" approach.
  202. SHADER_DESC exampleShaderDesc;
  203. // Add a world view projection matrix parameter, which will be populated by the renderer.
  204. // We map our shader parameter name to the actual GPU program variable, both being "matWorldViewProj" in this case.
  205. exampleShaderDesc.addParameter("matWorldViewProj", "matWorldViewProj", GPDT_MATRIX_4X4, RPS_WorldViewProjTfrm);
  206. // Add a sampler and a texture semantic that we will populate manually.
  207. exampleShaderDesc.addParameter("samp", "samp", GPOT_SAMPLER2D);
  208. exampleShaderDesc.addParameter("tex", "tex", GPOT_TEXTURE2D);
  209. // Our GPU programs use parameter blocks (constant buffers in DX11 lingo). Here we notify the renderer
  210. // that this particular parameter block contains object-specific data (like the world view projection parameter
  211. // we defined above).
  212. exampleShaderDesc.setParamBlockAttribs("PerObject", true, GPBU_DYNAMIC, RBS_PerObject);
  213. // Create a shader that references our vertex and fragment GPU programs, and set
  214. // up shader input parameters.
  215. ShaderPtr exampleShader = Shader::create("ExampleShader", exampleShaderDesc,{ technique });
  216. /************************************************************************/
  217. /* CREATE MATERIAL */
  218. /************************************************************************/
  219. // And finally create a material with the newly created shader
  220. HMaterial exampleMaterial = Material::create(exampleShader);
  221. // And set the texture to be used by the "tex" shader parameter. We leave the "samp"
  222. // parameter at its defaults.
  223. exampleMaterial->setTexture("tex", texture);
  224. return exampleMaterial;
  225. }
  226. void setUp3DScene(const HMesh& mesh, const HMaterial& material)
  227. {
  228. /************************************************************************/
  229. /* SCENE OBJECT */
  230. /************************************************************************/
  231. // Now we create a scene object that has a position, orientation, scale and optionally
  232. // components to govern its logic. In this particular case we are creating a SceneObject
  233. // with a Renderable component which will render a mesh at the position of the scene object
  234. // with the provided material.
  235. // Create new scene object at (0, 0, 0)
  236. HSceneObject dragonSO = SceneObject::create("Dragon");
  237. // Attach the Renderable component and hook up the mesh we imported earlier,
  238. // and the material we created in the previous section.
  239. HRenderable renderable = dragonSO->addComponent<Renderable>();
  240. renderable->setMesh(mesh);
  241. renderable->setMaterial(material);
  242. /************************************************************************/
  243. /* CAMERA */
  244. /************************************************************************/
  245. // In order something to render on screen we need at least one camera.
  246. // Like before, we create a new scene object at (0, 0, 0).
  247. HSceneObject sceneCameraSO = SceneObject::create("SceneCamera");
  248. // Get the primary render window we need for creating the camera. Additionally
  249. // hook up a callback so we are notified when user resizes the window.
  250. RenderWindowPtr window = gApplication().getPrimaryWindow();
  251. window->onResized.connect(&renderWindowResized);
  252. // Add a Camera component that will output whatever it sees into that window
  253. // (You could also use a render texture or another window you created).
  254. sceneCamera = sceneCameraSO->addComponent<Camera>(window);
  255. // Set up camera component properties
  256. // Priority determines in what order are cameras rendered in case multiple cameras render to the same render target.
  257. // We raise the priority slightly because later in code we have defined a GUI camera that we want to render second.
  258. sceneCamera->setPriority(1);
  259. // Set closest distance that is visible. Anything below that is clipped.
  260. sceneCamera->setNearClipDistance(5);
  261. // Set aspect ratio depending on the current resolution
  262. sceneCamera->setAspectRatio(windowResWidth / (float)windowResHeight);
  263. // Add a CameraFlyer component that allows us to move the camera. See CameraFlyer for more information.
  264. sceneCameraSO->addComponent<CameraFlyer>();
  265. // Position and orient the camera scene object
  266. sceneCameraSO->setPosition(Vector3(-130.0f, 140.0f, 650.0f));
  267. sceneCameraSO->lookAt(Vector3(0, 0, 0));
  268. }
  269. void setUpInput()
  270. {
  271. // Register input configuration
  272. // Banshee allows you to use VirtualInput system which will map input device buttons
  273. // and axes to arbitrary names, which allows you to change input buttons without affecting
  274. // the code that uses it, since the code is only aware of the virtual names.
  275. // If you want more direct input, see Input class.
  276. auto inputConfig = VirtualInput::instance().getConfiguration();
  277. // Camera controls for buttons (digital 0-1 input, e.g. keyboard or gamepad button)
  278. inputConfig->registerButton("Forward", BC_W);
  279. inputConfig->registerButton("Back", BC_S);
  280. inputConfig->registerButton("Left", BC_A);
  281. inputConfig->registerButton("Right", BC_D);
  282. inputConfig->registerButton("Forward", BC_UP);
  283. inputConfig->registerButton("Back", BC_BACK);
  284. inputConfig->registerButton("Left", BC_LEFT);
  285. inputConfig->registerButton("Right", BC_RIGHT);
  286. inputConfig->registerButton("FastMove", BC_LSHIFT);
  287. inputConfig->registerButton("RotateCam", BC_MOUSE_RIGHT);
  288. // Camera controls for axes (analog input, e.g. mouse or gamepad thumbstick)
  289. // These return values in [-1.0, 1.0] range.
  290. inputConfig->registerAxis("Horizontal", VIRTUAL_AXIS_DESC((UINT32)InputAxis::MouseX));
  291. inputConfig->registerAxis("Vertical", VIRTUAL_AXIS_DESC((UINT32)InputAxis::MouseY));
  292. // Controls that toggle the profiler overlays
  293. inputConfig->registerButton("CPUProfilerOverlay", BC_F1);
  294. inputConfig->registerButton("GPUProfilerOverlay", BC_F2);
  295. // Cache the profiler overlay buttons so when a button is pressed we can quickly
  296. // use these to determine its the one we want
  297. toggleCPUProfilerBtn = VirtualButton("CPUProfilerOverlay");
  298. toggleGPUProfilerBtn = VirtualButton("GPUProfilerOverlay");
  299. // Hook up a callback that gets triggered whenever a virtual button is released
  300. VirtualInput::instance().onButtonUp.connect(&buttonUp);
  301. }
  302. void setUpGUI()
  303. {
  304. // Create a scene object that will contain GUI components
  305. HSceneObject guiSO = SceneObject::create("Example");
  306. // Get the primary render window we need for creating the camera.
  307. RenderWindowPtr window = gApplication().getPrimaryWindow();
  308. // First we want another camera that is responsible for rendering GUI
  309. HCamera guiCamera = guiSO->addComponent<Camera>(window);
  310. // Set up GUI camera properties.
  311. // We don't care about aspect ratio for GUI camera.
  312. guiCamera->setAspectRatio(1.0f);
  313. // This camera should ignore any Renderable objects in the scene
  314. guiCamera->setIgnoreSceneRenderables(true);
  315. // Don't clear this camera as that would clear anything the main camera has rendered.
  316. guiCamera->getViewport()->setRequiresClear(false, false, false);
  317. // Add a GUIWidget, the top-level GUI component, parent to all GUI elements. GUI widgets
  318. // require you to specify a viewport that they will output rendered GUI elements to.
  319. HGUIWidget gui = guiSO->addComponent<GUIWidget>(guiCamera->getViewport().get());
  320. // Depth allows you to control how is a GUI widget rendered in relation to other widgets
  321. // Lower depth means the widget will be rendered in front of those with higher. In this case we just
  322. // make the depth mid-range as there are no other widgets.
  323. gui->setDepth(128);
  324. // GUI skin defines how are all child elements of the GUI widget renderered. It contains all their styles
  325. // and default layout properties. We use the default skin that comes built into Banshee.
  326. gui->setSkin(BuiltinResources::instance().getGUISkin());
  327. // Create a GUI area that is used for displaying messages about toggling profiler overlays.
  328. // This area will stretch the entire surface of its parent widget, even if the widget is resized.
  329. GUIArea* bottomArea = GUIArea::createStretchedXY(*gui, 0, 0, 0, 0);
  330. // Add a vertical layout that will automatically position any child elements top to bottom.
  331. GUILayout& bottomLayout = bottomArea->getLayout().addLayoutY();
  332. // Add a flexible space that fills up any remaining area in the layout, making the two labels above be aligned
  333. // to the bottom of the GUI widget (and the screen).
  334. bottomLayout.addFlexibleSpace();
  335. // Add a couple of labels to the layout with the needed messages. Labels expect a HString object that
  336. // maps into a string table and allows for easily localization.
  337. bottomLayout.addElement(GUILabel::create(HString(L"Press F1 to toggle CPU profiler overlay")));
  338. bottomLayout.addElement(GUILabel::create(HString(L"Press F2 to toggle GPU profiler overlay")));
  339. // Create a GUI area that is used for displaying resolution and fullscreen options.
  340. GUIArea* rightArea = GUIArea::createStretchedXY(*gui, 30, 30, 30, 30);
  341. // We want all the GUI elements be right aligned, so we add a flexible space first.
  342. rightArea->getLayout().addFlexibleSpace();
  343. // And we want the elements to be vertically placed, top to bottom
  344. GUILayout& rightLayout = rightArea->getLayout().addLayoutY();
  345. // Add a button that will trigger a callback when clicked
  346. toggleFullscreenButton = GUIButton::create(HString(L"Toggle fullscreen"));
  347. toggleFullscreenButton->onClick.connect(&toggleFullscreen);
  348. rightLayout.addElement(toggleFullscreenButton);
  349. // Add a profiler overlay object that is resposible for displaying CPU and GPU profiling GUI
  350. profilerOverlay = guiSO->addComponent<ProfilerOverlay>(guiCamera->getViewport());
  351. // Set up video mode list box
  352. // First get a list of output devices
  353. const VideoModeInfo& videoModeInfo = RenderSystem::instance().getVideoModeInfo();
  354. // Get video mode info for the primary monitor
  355. const VideoOutputInfo& primaryMonitorInfo = videoModeInfo.getOutputInfo(0);
  356. // Make the current desktop mode the default video mode
  357. selectedVideoMode = &primaryMonitorInfo.getDesktopVideoMode();
  358. // Create list box elements for each available video mode
  359. UINT32 numVideoModes = primaryMonitorInfo.getNumVideoModes();
  360. Vector<HString> videoModeLabels(numVideoModes);
  361. UINT32 selectedVideoModeIdx = 0;
  362. for (UINT32 i = 0; i < numVideoModes; i++)
  363. {
  364. const VideoMode& curVideoMode = primaryMonitorInfo.getVideoMode(i);
  365. HString videoModeLabel(L"{0} x {1} at {2}Hz");
  366. videoModeLabel.setParameter(0, toWString(curVideoMode.getWidth()));
  367. videoModeLabel.setParameter(1, toWString(curVideoMode.getHeight()));
  368. videoModeLabel.setParameter(2, toWString(Math::roundToInt(curVideoMode.getRefreshRate())));
  369. videoModeLabels[i] = videoModeLabel;
  370. videoModes.push_back(&curVideoMode);
  371. if (curVideoMode == *selectedVideoMode)
  372. selectedVideoModeIdx = i;
  373. }
  374. // Create the list box
  375. GUIListBox* videoModeListBox = GUIListBox::create(videoModeLabels);
  376. rightLayout.addElement(videoModeListBox);
  377. // Select the default (desktop) video mode
  378. videoModeListBox->selectElement(selectedVideoModeIdx);
  379. // Set up a callback to be notified when video mode changes
  380. videoModeListBox->onSelectionChanged.connect(&videoModeChanged);
  381. }
  382. void toggleFullscreen()
  383. {
  384. RenderWindowPtr window = gApplication().getPrimaryWindow();
  385. // In order to toggle between full-screen and windowed mode we need to use a CoreAccessor.
  386. // Banshee is a multi-threaded engine and when you need to communicate between simulation and
  387. // core thread you will use a CoreAccessor. Calling a core accessor method will essentially
  388. // queue the method to be executed later. Since RenderWindow is a core object you need to use
  389. // CoreAccessor to modify and access it from simulation thread, except where noted otherwise.
  390. // Classes where it is not clear if they are to be used on the core or simulation thread have
  391. // it noted in their documentation. e.g. RenderWindow::setWindowed method is marked as "Core only".
  392. // Additional asserts are normally in place for debug builds which make it harder for you to accidentally
  393. // call something from the wrong thread.
  394. if (fullscreen)
  395. {
  396. window->setWindowed(gCoreAccessor(), windowResWidth, windowResHeight);
  397. }
  398. else
  399. {
  400. window->setFullscreen(gCoreAccessor(), *selectedVideoMode);
  401. }
  402. fullscreen = !fullscreen;
  403. }
  404. void renderWindowResized()
  405. {
  406. RenderWindowPtr window = gApplication().getPrimaryWindow();
  407. const RenderWindowProperties& rwProps = window->getProperties();
  408. if (!fullscreen)
  409. {
  410. windowResWidth = rwProps.getWidth();
  411. windowResHeight = rwProps.getHeight();
  412. }
  413. sceneCamera->setAspectRatio(rwProps.getWidth() / (float)rwProps.getHeight());
  414. }
  415. void videoModeChanged(UINT32 idx)
  416. {
  417. selectedVideoMode = videoModes[idx];
  418. if (fullscreen)
  419. {
  420. RenderWindowPtr window = gApplication().getPrimaryWindow();
  421. window->setFullscreen(gCoreAccessor(), *selectedVideoMode);
  422. }
  423. }
  424. void buttonUp(const VirtualButton& button, UINT32 deviceIdx)
  425. {
  426. // Check if the pressed button is one of the either buttons we defined
  427. // in "setUpExample", and toggle profiler overlays accordingly.
  428. // Device index is ignored for now, as it is assumed the user is using a single keyboard,
  429. // but if you wanted support for multiple gamepads you would check deviceIdx.
  430. if (button == toggleCPUProfilerBtn)
  431. {
  432. if (cpuProfilerActive)
  433. {
  434. profilerOverlay->hide();
  435. cpuProfilerActive = false;
  436. }
  437. else
  438. {
  439. profilerOverlay->show(ProfilerOverlayType::CPUSamples);
  440. cpuProfilerActive = true;
  441. gpuProfilerActive = false;
  442. }
  443. }
  444. else if (button == toggleGPUProfilerBtn)
  445. {
  446. if (gpuProfilerActive)
  447. {
  448. profilerOverlay->hide();
  449. gpuProfilerActive = false;
  450. }
  451. else
  452. {
  453. profilerOverlay->show(ProfilerOverlayType::GPUSamples);
  454. gpuProfilerActive = true;
  455. cpuProfilerActive = false;
  456. }
  457. }
  458. }
  459. }