BsMeshHeap.cpp 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703
  1. //********************************** Banshee Engine (www.banshee3d.com) **************************************************//
  2. //**************** Copyright (c) 2016 Marko Pintera ([email protected]). All rights reserved. **********************//
  3. #include "BsMeshHeap.h"
  4. #include "BsCoreThread.h"
  5. #include "BsTransientMesh.h"
  6. #include "BsHardwareBufferManager.h"
  7. #include "BsVertexDataDesc.h"
  8. #include "BsVertexData.h"
  9. #include "BsMeshData.h"
  10. #include "BsMath.h"
  11. #include "BsEventQuery.h"
  12. #include "BsRenderAPI.h"
  13. namespace BansheeEngine
  14. {
  15. const float MeshHeapCore::GrowPercent = 1.5f;
  16. MeshHeapCore::MeshHeapCore(UINT32 numVertices, UINT32 numIndices,
  17. const VertexDataDescPtr& vertexDesc, IndexType indexType)
  18. :mNumVertices(numVertices), mNumIndices(numIndices), mIndexType(indexType),
  19. mVertexDesc(vertexDesc), mCPUIndexData(nullptr), mNextQueryId(0)
  20. {
  21. for (UINT32 i = 0; i <= mVertexDesc->getMaxStreamIdx(); i++)
  22. {
  23. mCPUVertexData.push_back(nullptr);
  24. }
  25. }
  26. MeshHeapCore::~MeshHeapCore()
  27. {
  28. THROW_IF_NOT_CORE_THREAD;
  29. for (auto& cpuVertBuffer : mCPUVertexData)
  30. bs_free(cpuVertBuffer);
  31. if (mCPUIndexData != nullptr)
  32. bs_free(mCPUIndexData);
  33. mVertexData = nullptr;
  34. mIndexBuffer = nullptr;
  35. mVertexDesc = nullptr;
  36. }
  37. void MeshHeapCore::initialize()
  38. {
  39. THROW_IF_NOT_CORE_THREAD;
  40. growVertexBuffer(mNumVertices);
  41. growIndexBuffer(mNumIndices);
  42. CoreObjectCore::initialize();
  43. }
  44. void MeshHeapCore::alloc(SPtr<TransientMeshCore> mesh, const MeshDataPtr& meshData)
  45. {
  46. // Find free vertex chunk and grow if needed
  47. UINT32 smallestVertFit = 0;
  48. UINT32 smallestVertFitIdx = 0;
  49. while (smallestVertFit == 0)
  50. {
  51. UINT32 curIdx = 0;
  52. for (auto& chunkIdx : mFreeVertChunks)
  53. {
  54. ChunkData& chunk = mVertChunks[chunkIdx];
  55. if (chunk.size >= meshData->getNumVertices() && (chunk.size < smallestVertFit || smallestVertFit == 0))
  56. {
  57. smallestVertFit = chunk.size;
  58. smallestVertFitIdx = curIdx;
  59. }
  60. curIdx++;
  61. }
  62. if (smallestVertFit > 0)
  63. break;
  64. UINT32 newNumVertices = mNumVertices;
  65. while (newNumVertices < (mNumVertices + meshData->getNumVertices()))
  66. {
  67. newNumVertices = Math::roundToInt(newNumVertices * GrowPercent);
  68. }
  69. growVertexBuffer(newNumVertices);
  70. }
  71. // Find free index chunk and grow if needed
  72. UINT32 smallestIdxFit = 0;
  73. UINT32 smallestIdxFitIdx = 0;
  74. while (smallestIdxFit == 0)
  75. {
  76. UINT32 curIdx = 0;
  77. for (auto& chunkIdx : mFreeIdxChunks)
  78. {
  79. ChunkData& chunk = mIdxChunks[chunkIdx];
  80. if (chunk.size >= meshData->getNumIndices() && (chunk.size < smallestIdxFit || smallestIdxFit == 0))
  81. {
  82. smallestIdxFit = chunk.size;
  83. smallestIdxFitIdx = curIdx;
  84. }
  85. curIdx++;
  86. }
  87. if (smallestIdxFit > 0)
  88. break;
  89. UINT32 newNumIndices = mNumIndices;
  90. while (newNumIndices < (mNumIndices + meshData->getNumIndices()))
  91. {
  92. newNumIndices = Math::roundToInt(newNumIndices * GrowPercent);
  93. }
  94. growIndexBuffer(newNumIndices);
  95. }
  96. UINT32 freeVertChunkIdx = 0;
  97. UINT32 freeIdxChunkIdx = 0;
  98. auto freeVertIter = mFreeVertChunks.begin();
  99. freeVertChunkIdx = (*freeVertIter);
  100. for (UINT32 i = 0; i < smallestVertFitIdx; i++)
  101. {
  102. freeVertIter++;
  103. freeVertChunkIdx = (*freeVertIter);
  104. }
  105. mFreeVertChunks.erase(freeVertIter);
  106. auto freeIdxIter = mFreeIdxChunks.begin();
  107. freeIdxChunkIdx = (*freeIdxIter);
  108. for (UINT32 i = 0; i < smallestIdxFitIdx; i++)
  109. {
  110. freeIdxIter++;
  111. freeIdxChunkIdx = (*freeIdxIter);
  112. }
  113. mFreeIdxChunks.erase(freeIdxIter);
  114. ChunkData& vertChunk = mVertChunks[freeVertChunkIdx];
  115. ChunkData& idxChunk = mIdxChunks[freeIdxChunkIdx];
  116. UINT32 vertChunkStart = vertChunk.start;
  117. UINT32 idxChunkStart = idxChunk.start;
  118. UINT32 remainingNumVerts = vertChunk.size - meshData->getNumVertices();
  119. UINT32 remainingNumIdx = idxChunk.size - meshData->getNumIndices();
  120. vertChunk.size = meshData->getNumVertices();
  121. idxChunk.size = meshData->getNumIndices();
  122. if (remainingNumVerts > 0)
  123. {
  124. if (!mEmptyVertChunks.empty())
  125. {
  126. UINT32 emptyChunkIdx = mEmptyVertChunks.top();
  127. ChunkData& emptyChunk = mVertChunks[emptyChunkIdx];
  128. mEmptyVertChunks.pop();
  129. emptyChunk.start = vertChunkStart + meshData->getNumVertices();
  130. emptyChunk.size = remainingNumVerts;
  131. }
  132. else
  133. {
  134. ChunkData newChunk;
  135. newChunk.size = remainingNumVerts;
  136. newChunk.start = vertChunkStart + meshData->getNumVertices();
  137. mVertChunks.push_back(newChunk);
  138. mFreeVertChunks.push_back((UINT32)(mVertChunks.size() - 1));
  139. }
  140. }
  141. if (remainingNumIdx > 0)
  142. {
  143. if (!mEmptyIdxChunks.empty())
  144. {
  145. UINT32 emptyChunkIdx = mEmptyIdxChunks.top();
  146. ChunkData& emptyChunk = mIdxChunks[emptyChunkIdx];
  147. mEmptyIdxChunks.pop();
  148. emptyChunk.start = idxChunkStart + meshData->getNumIndices();
  149. emptyChunk.size = remainingNumIdx;
  150. }
  151. else
  152. {
  153. ChunkData newChunk;
  154. newChunk.size = remainingNumIdx;
  155. newChunk.start = idxChunkStart + meshData->getNumIndices();
  156. mIdxChunks.push_back(newChunk);
  157. mFreeIdxChunks.push_back((UINT32)(mIdxChunks.size() - 1));
  158. }
  159. }
  160. AllocatedData newAllocData;
  161. newAllocData.vertChunkIdx = freeVertChunkIdx;
  162. newAllocData.idxChunkIdx = freeIdxChunkIdx;
  163. newAllocData.useFlags = UseFlags::GPUFree;
  164. newAllocData.eventQueryIdx = createEventQuery();
  165. newAllocData.mesh = mesh;
  166. mMeshAllocData[mesh->getMeshHeapId()] = newAllocData;
  167. // Actually copy data
  168. for (UINT32 i = 0; i <= mVertexDesc->getMaxStreamIdx(); i++)
  169. {
  170. if (!mVertexDesc->hasStream(i))
  171. continue;
  172. if (!meshData->getVertexDesc()->hasStream(i))
  173. continue;
  174. // Ensure vertex sizes match
  175. UINT32 vertSize = mVertexData->vertexDeclaration->getProperties().getVertexSize(i);
  176. UINT32 otherVertSize = meshData->getVertexDesc()->getVertexStride(i);
  177. if (otherVertSize != vertSize)
  178. {
  179. BS_EXCEPT(InvalidParametersException, "Provided vertex size for stream " + toString(i) + " doesn't match meshes vertex size. Needed: " +
  180. toString(vertSize) + ". Got: " + toString(otherVertSize));
  181. }
  182. SPtr<VertexBufferCore> vertexBuffer = mVertexData->getBuffer(i);
  183. const VertexBufferProperties& vbProps = vertexBuffer->getProperties();
  184. UINT8* vertDest = mCPUVertexData[i] + vertChunkStart * vertSize;
  185. memcpy(vertDest, meshData->getStreamData(i), meshData->getNumVertices() * vertSize);
  186. if (RenderAPICore::instance().getVertexColorFlipRequired())
  187. {
  188. UINT32 vertexStride = mVertexDesc->getVertexStride(i);
  189. for (INT32 semanticIdx = 0; semanticIdx < VertexBuffer::MAX_SEMANTIC_IDX; semanticIdx++)
  190. {
  191. if (!mVertexDesc->hasElement(VES_COLOR, semanticIdx, i))
  192. continue;
  193. UINT8* colorData = vertDest + mVertexDesc->getElementOffsetFromStream(VES_COLOR, semanticIdx, i);
  194. for (UINT32 j = 0; j < meshData->getNumVertices(); j++)
  195. {
  196. UINT32* curColor = (UINT32*)colorData;
  197. (*curColor) = ((*curColor) & 0xFF00FF00) | ((*curColor >> 16) & 0x000000FF) | ((*curColor << 16) & 0x00FF0000);
  198. colorData += vertexStride;
  199. }
  200. }
  201. }
  202. vertexBuffer->writeData(vertChunkStart * vertSize, meshData->getNumVertices() * vertSize, vertDest, BufferWriteType::NoOverwrite);
  203. }
  204. const IndexBufferProperties& ibProps = mIndexBuffer->getProperties();
  205. UINT32 idxSize = ibProps.getIndexSize();
  206. // Ensure index sizes match
  207. if (meshData->getIndexElementSize() != idxSize)
  208. {
  209. BS_EXCEPT(InvalidParametersException, "Provided index size doesn't match meshes index size. Needed: " +
  210. toString(idxSize) + ". Got: " + toString(meshData->getIndexElementSize()));
  211. }
  212. UINT8* idxDest = mCPUIndexData + idxChunkStart * idxSize;
  213. memcpy(idxDest, meshData->getIndexData(), meshData->getNumIndices() * idxSize);
  214. mIndexBuffer->writeData(idxChunkStart * idxSize, meshData->getNumIndices() * idxSize, idxDest, BufferWriteType::NoOverwrite);
  215. }
  216. void MeshHeapCore::dealloc(SPtr<TransientMeshCore> mesh)
  217. {
  218. auto findIter = mMeshAllocData.find(mesh->getMeshHeapId());
  219. assert(findIter != mMeshAllocData.end());
  220. AllocatedData& allocData = findIter->second;
  221. if (allocData.useFlags == UseFlags::GPUFree)
  222. {
  223. allocData.useFlags = UseFlags::Free;
  224. freeEventQuery(allocData.eventQueryIdx);
  225. mFreeVertChunks.push_back(allocData.vertChunkIdx);
  226. mFreeIdxChunks.push_back(allocData.idxChunkIdx);
  227. mergeWithNearbyChunks(allocData.vertChunkIdx, allocData.idxChunkIdx);
  228. mMeshAllocData.erase(findIter);
  229. }
  230. else if (allocData.useFlags == UseFlags::Used)
  231. allocData.useFlags = UseFlags::CPUFree;
  232. }
  233. void MeshHeapCore::growVertexBuffer(UINT32 numVertices)
  234. {
  235. mNumVertices = numVertices;
  236. mVertexData = std::shared_ptr<VertexData>(bs_new<VertexData>());
  237. mVertexData->vertexCount = mNumVertices;
  238. List<VertexElement> elements = mVertexDesc->createElements();
  239. mVertexData->vertexDeclaration = HardwareBufferCoreManager::instance().createVertexDeclaration(elements);
  240. // Create buffers and copy data
  241. for (UINT32 i = 0; i <= mVertexDesc->getMaxStreamIdx(); i++)
  242. {
  243. if (!mVertexDesc->hasStream(i))
  244. continue;
  245. UINT32 vertSize = mVertexData->vertexDeclaration->getProperties().getVertexSize(i);
  246. SPtr<VertexBufferCore> vertexBuffer = HardwareBufferCoreManager::instance().createVertexBuffer(
  247. vertSize, mVertexData->vertexCount, GBU_DYNAMIC);
  248. mVertexData->setBuffer(i, vertexBuffer);
  249. // Copy all data to the new buffer
  250. UINT8* oldBuffer = mCPUVertexData[i];
  251. UINT8* buffer = (UINT8*)bs_alloc(vertSize * numVertices);
  252. UINT32 destOffset = 0;
  253. if (oldBuffer != nullptr)
  254. {
  255. for (auto& allocData : mMeshAllocData)
  256. {
  257. ChunkData& oldChunk = mVertChunks[allocData.second.vertChunkIdx];
  258. UINT8* oldData = oldBuffer + oldChunk.start * vertSize;
  259. memcpy(buffer + destOffset * vertSize, oldData, oldChunk.size * vertSize);
  260. destOffset += oldChunk.size;
  261. }
  262. bs_free(oldBuffer);
  263. }
  264. if (destOffset > 0)
  265. vertexBuffer->writeData(0, destOffset * vertSize, buffer, BufferWriteType::NoOverwrite);
  266. mCPUVertexData[i] = buffer;
  267. }
  268. // Reorder chunks
  269. UINT32 destOffset = 0;
  270. Vector<ChunkData> newVertChunks;
  271. List<UINT32> freeVertChunks;
  272. for (auto& allocData : mMeshAllocData)
  273. {
  274. ChunkData& oldChunk = mVertChunks[allocData.second.vertChunkIdx];
  275. ChunkData newChunk;
  276. newChunk.start = destOffset;
  277. newChunk.size = oldChunk.size;
  278. allocData.second.vertChunkIdx = (UINT32)newVertChunks.size();
  279. newVertChunks.push_back(newChunk);
  280. destOffset += oldChunk.size;
  281. }
  282. // Add free chunk
  283. if (destOffset != mNumVertices)
  284. {
  285. ChunkData newChunk;
  286. newChunk.start = destOffset;
  287. newChunk.size = mNumVertices - destOffset;
  288. newVertChunks.push_back(newChunk);
  289. freeVertChunks.push_back((UINT32)(newVertChunks.size() - 1));
  290. }
  291. mVertChunks = newVertChunks;
  292. mFreeVertChunks = freeVertChunks;
  293. while (!mEmptyVertChunks.empty())
  294. mEmptyVertChunks.pop();
  295. }
  296. void MeshHeapCore::growIndexBuffer(UINT32 numIndices)
  297. {
  298. mNumIndices = numIndices;
  299. mIndexBuffer = HardwareBufferCoreManager::instance().createIndexBuffer(mIndexType, mNumIndices, GBU_DYNAMIC);
  300. const IndexBufferProperties& ibProps = mIndexBuffer->getProperties();
  301. // Copy all data to the new buffer
  302. UINT32 idxSize = ibProps.getIndexSize();
  303. UINT8* oldBuffer = mCPUIndexData;
  304. UINT8* buffer = (UINT8*)bs_alloc(idxSize * numIndices);
  305. UINT32 destOffset = 0;
  306. if (oldBuffer != nullptr)
  307. {
  308. for (auto& allocData : mMeshAllocData)
  309. {
  310. ChunkData& oldChunk = mIdxChunks[allocData.second.idxChunkIdx];
  311. UINT8* oldData = oldBuffer + oldChunk.start * idxSize;
  312. memcpy(buffer + destOffset * idxSize, oldData, oldChunk.size * idxSize);
  313. destOffset += oldChunk.size;
  314. }
  315. bs_free(oldBuffer);
  316. }
  317. if (destOffset > 0)
  318. mIndexBuffer->writeData(0, destOffset * idxSize, buffer, BufferWriteType::NoOverwrite);
  319. mCPUIndexData = buffer;
  320. // Reorder chunks
  321. destOffset = 0;
  322. Vector<ChunkData> newIdxChunks;
  323. List<UINT32> freeIdxChunks;
  324. for (auto& allocData : mMeshAllocData)
  325. {
  326. ChunkData& oldChunk = mIdxChunks[allocData.second.idxChunkIdx];
  327. ChunkData newChunk;
  328. newChunk.start = destOffset;
  329. newChunk.size = oldChunk.size;
  330. allocData.second.idxChunkIdx = (UINT32)newIdxChunks.size();
  331. newIdxChunks.push_back(newChunk);
  332. destOffset += oldChunk.size;
  333. }
  334. // Add free chunk
  335. if (destOffset != mNumIndices)
  336. {
  337. ChunkData newChunk;
  338. newChunk.start = destOffset;
  339. newChunk.size = mNumIndices - destOffset;
  340. newIdxChunks.push_back(newChunk);
  341. freeIdxChunks.push_back((UINT32)(newIdxChunks.size() - 1));
  342. }
  343. mIdxChunks = newIdxChunks;
  344. mFreeIdxChunks = freeIdxChunks;
  345. while (!mEmptyIdxChunks.empty())
  346. mEmptyIdxChunks.pop();
  347. }
  348. UINT32 MeshHeapCore::createEventQuery()
  349. {
  350. UINT32 idx = 0;
  351. if (mFreeEventQueries.size() > 0)
  352. {
  353. idx = mFreeEventQueries.top();
  354. mFreeEventQueries.pop();
  355. }
  356. else
  357. {
  358. QueryData newQuery;
  359. newQuery.query = EventQuery::create();
  360. newQuery.queryId = 0;
  361. mEventQueries.push_back(newQuery);
  362. idx = (UINT32)(mEventQueries.size() - 1);
  363. }
  364. return idx;
  365. }
  366. void MeshHeapCore::freeEventQuery(UINT32 idx)
  367. {
  368. mEventQueries[idx].query->onTriggered.clear();
  369. mEventQueries[idx].queryId = 0;
  370. mFreeEventQueries.push(idx);
  371. }
  372. SPtr<VertexData> MeshHeapCore::getVertexData() const
  373. {
  374. return mVertexData;
  375. }
  376. SPtr<IndexBufferCore> MeshHeapCore::getIndexBuffer() const
  377. {
  378. return mIndexBuffer;
  379. }
  380. SPtr<VertexDataDesc> MeshHeapCore::getVertexDesc() const
  381. {
  382. return mVertexDesc;
  383. }
  384. UINT32 MeshHeapCore::getVertexOffset(UINT32 meshId) const
  385. {
  386. auto findIter = mMeshAllocData.find(meshId);
  387. assert(findIter != mMeshAllocData.end());
  388. UINT32 chunkIdx = findIter->second.vertChunkIdx;
  389. return mVertChunks[chunkIdx].start;
  390. }
  391. UINT32 MeshHeapCore::getIndexOffset(UINT32 meshId) const
  392. {
  393. auto findIter = mMeshAllocData.find(meshId);
  394. assert(findIter != mMeshAllocData.end());
  395. UINT32 chunkIdx = findIter->second.idxChunkIdx;
  396. return mIdxChunks[chunkIdx].start;
  397. }
  398. void MeshHeapCore::notifyUsedOnGPU(UINT32 meshId)
  399. {
  400. auto findIter = mMeshAllocData.find(meshId);
  401. assert(findIter != mMeshAllocData.end());
  402. AllocatedData& allocData = findIter->second;
  403. assert(allocData.useFlags != UseFlags::Free);
  404. if (allocData.useFlags == UseFlags::GPUFree)
  405. allocData.useFlags = UseFlags::Used;
  406. SPtr<MeshHeapCore> thisPtr = std::static_pointer_cast<MeshHeapCore>(getThisPtr());
  407. QueryData& queryData = mEventQueries[allocData.eventQueryIdx];
  408. queryData.queryId = mNextQueryId++;
  409. queryData.query->onTriggered.clear();
  410. queryData.query->onTriggered.connect(std::bind(&MeshHeapCore::queryTriggered, thisPtr, meshId, queryData.queryId));
  411. queryData.query->begin();
  412. }
  413. // Note: Need to use a shared ptr here to ensure MeshHeap doesn't get deallocated sometime during this callback
  414. void MeshHeapCore::queryTriggered(SPtr<MeshHeapCore> thisPtr, UINT32 meshId, UINT32 queryId)
  415. {
  416. auto findIter = thisPtr->mMeshAllocData.find(meshId);
  417. assert(findIter != thisPtr->mMeshAllocData.end());
  418. AllocatedData& allocData = findIter->second;
  419. // If query ids don't match then it means there either a more recent query or
  420. // the buffer was discarded and we are not interested in query result
  421. QueryData& queryData = thisPtr->mEventQueries[allocData.eventQueryIdx];
  422. if (queryId == queryData.queryId)
  423. {
  424. assert(allocData.useFlags != UseFlags::Free && allocData.useFlags != UseFlags::GPUFree);
  425. if (allocData.useFlags == UseFlags::CPUFree)
  426. {
  427. allocData.useFlags = UseFlags::Free;
  428. thisPtr->freeEventQuery(allocData.eventQueryIdx);
  429. thisPtr->mFreeVertChunks.push_back(allocData.vertChunkIdx);
  430. thisPtr->mFreeIdxChunks.push_back(allocData.idxChunkIdx);
  431. thisPtr->mergeWithNearbyChunks(allocData.vertChunkIdx, allocData.idxChunkIdx);
  432. thisPtr->mMeshAllocData.erase(findIter);
  433. }
  434. else
  435. allocData.useFlags = UseFlags::GPUFree;
  436. }
  437. queryData.query->onTriggered.clear();
  438. }
  439. void MeshHeapCore::mergeWithNearbyChunks(UINT32 chunkVertIdx, UINT32 chunkIdxIdx)
  440. {
  441. // Merge vertex chunks
  442. ChunkData& vertChunk = mVertChunks[chunkVertIdx];
  443. for (auto& freeChunkIdx : mFreeVertChunks)
  444. {
  445. if (chunkVertIdx == freeChunkIdx)
  446. continue;
  447. ChunkData& curChunk = mVertChunks[freeChunkIdx];
  448. if (curChunk.size == 0) // Already merged
  449. continue;
  450. bool merged = false;
  451. if (curChunk.start == (vertChunk.start + vertChunk.size))
  452. {
  453. vertChunk.size += curChunk.size;
  454. merged = true;
  455. }
  456. else if ((curChunk.start + curChunk.size) == vertChunk.start)
  457. {
  458. vertChunk.start = curChunk.start;
  459. vertChunk.size += curChunk.size;
  460. merged = true;
  461. }
  462. if (merged)
  463. {
  464. // We can't remove the chunk since that would break the indexing scheme, so
  465. // mark it as empty and set size to 0. It will be reused when needed.
  466. curChunk.start = 0;
  467. curChunk.size = 0;
  468. mEmptyVertChunks.push(freeChunkIdx);
  469. }
  470. }
  471. // Merge index chunks
  472. ChunkData& idxChunk = mIdxChunks[chunkIdxIdx];
  473. for (auto& freeChunkIdx : mFreeIdxChunks)
  474. {
  475. if (chunkIdxIdx == freeChunkIdx)
  476. continue;
  477. ChunkData& curChunk = mIdxChunks[freeChunkIdx];
  478. if (curChunk.size == 0) // Already merged
  479. continue;
  480. bool merged = false;
  481. if (curChunk.start == (idxChunk.start + idxChunk.size))
  482. {
  483. idxChunk.size += curChunk.size;
  484. merged = true;
  485. }
  486. else if ((curChunk.start + curChunk.size) == idxChunk.start)
  487. {
  488. idxChunk.start = curChunk.start;
  489. idxChunk.size += curChunk.size;
  490. merged = true;
  491. }
  492. if (merged)
  493. {
  494. // We can't remove the chunk since that would break the indexing scheme, so
  495. // mark it as empty and set size to 0. It will be reused when needed.
  496. curChunk.start = 0;
  497. curChunk.size = 0;
  498. mEmptyIdxChunks.push(freeChunkIdx);
  499. }
  500. }
  501. }
  502. MeshHeap::MeshHeap(UINT32 numVertices, UINT32 numIndices,
  503. const VertexDataDescPtr& vertexDesc, IndexType indexType)
  504. :mNumVertices(numVertices), mNumIndices(numIndices), mNextFreeId(0),
  505. mIndexType(indexType), mVertexDesc(vertexDesc)
  506. {
  507. }
  508. MeshHeapPtr MeshHeap::create(UINT32 numVertices, UINT32 numIndices,
  509. const VertexDataDescPtr& vertexDesc, IndexType indexType)
  510. {
  511. MeshHeap* meshHeap = new (bs_alloc<MeshHeap>()) MeshHeap(numVertices, numIndices, vertexDesc, indexType);
  512. MeshHeapPtr meshHeapPtr = bs_core_ptr<MeshHeap>(meshHeap);
  513. meshHeapPtr->_setThisPtr(meshHeapPtr);
  514. meshHeapPtr->initialize();
  515. return meshHeapPtr;
  516. }
  517. TransientMeshPtr MeshHeap::alloc(const MeshDataPtr& meshData, DrawOperationType drawOp)
  518. {
  519. UINT32 meshIdx = mNextFreeId++;
  520. MeshHeapPtr thisPtr = std::static_pointer_cast<MeshHeap>(getThisPtr());
  521. TransientMesh* transientMesh = new (bs_alloc<TransientMesh>()) TransientMesh(thisPtr, meshIdx, meshData->getNumVertices(), meshData->getNumIndices(), drawOp);
  522. TransientMeshPtr transientMeshPtr = bs_core_ptr<TransientMesh>(transientMesh);
  523. transientMeshPtr->_setThisPtr(transientMeshPtr);
  524. transientMeshPtr->initialize();
  525. mMeshes[meshIdx] = transientMeshPtr;
  526. queueGpuCommand(getCore(), std::bind(&MeshHeapCore::alloc, getCore().get(), transientMeshPtr->getCore(), meshData));
  527. return transientMeshPtr;
  528. }
  529. void MeshHeap::dealloc(const TransientMeshPtr& mesh)
  530. {
  531. auto iterFind = mMeshes.find(mesh->mId);
  532. if(iterFind == mMeshes.end())
  533. return;
  534. mesh->markAsDestroyed();
  535. mMeshes.erase(iterFind);
  536. queueGpuCommand(getCore(), std::bind(&MeshHeapCore::dealloc, getCore().get(), mesh->getCore()));
  537. }
  538. SPtr<MeshHeapCore> MeshHeap::getCore() const
  539. {
  540. return std::static_pointer_cast<MeshHeapCore>(mCoreSpecific);
  541. }
  542. SPtr<CoreObjectCore> MeshHeap::createCore() const
  543. {
  544. MeshHeapCore* obj = new (bs_alloc<MeshHeapCore>()) MeshHeapCore(mNumVertices, mNumIndices,
  545. mVertexDesc, mIndexType);
  546. SPtr<MeshHeapCore> corePtr = bs_shared_ptr<MeshHeapCore>(obj);
  547. obj->_setThisPtr(corePtr);
  548. return corePtr;
  549. }
  550. }