BsHandleSliderDisc.cpp 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185
  1. //********************************** Banshee Engine (www.banshee3d.com) **************************************************//
  2. //**************** Copyright (c) 2016 Marko Pintera ([email protected]). All rights reserved. **********************//
  3. #include "BsHandleSliderDisc.h"
  4. #include "BsHandleManager.h"
  5. #include "BsHandleSliderManager.h"
  6. #include "BsRay.h"
  7. #include "BsVector3.h"
  8. #include "BsQuaternion.h"
  9. #include "BsCCamera.h"
  10. // DEBUG ONLY
  11. #include "BsDebug.h"
  12. #include "BsGizmoManager.h"
  13. namespace BansheeEngine
  14. {
  15. const float HandleSliderDisc::TORUS_RADIUS = 0.1f;
  16. HandleSliderDisc::HandleSliderDisc(const Vector3& normal, float radius, bool fixedScale, UINT64 layer)
  17. :HandleSlider(fixedScale, layer), mRadius(radius), mNormal(normal), mDelta(0.0f), mHasCutoffPlane(false)
  18. {
  19. mCollider = Torus(normal, radius, TORUS_RADIUS);
  20. HandleSliderManager& sliderManager = HandleManager::instance().getSliderManager();
  21. sliderManager._registerSlider(this);
  22. }
  23. HandleSliderDisc::~HandleSliderDisc()
  24. {
  25. HandleSliderManager& sliderManager = HandleManager::instance().getSliderManager();
  26. sliderManager._unregisterSlider(this);
  27. }
  28. void HandleSliderDisc::setCutoffPlane(Degree angle, bool enabled)
  29. {
  30. mHasCutoffPlane = enabled;
  31. if (mHasCutoffPlane)
  32. {
  33. Vector3 up = mNormal;
  34. Quaternion alignWithStart = Quaternion(-Vector3::UNIT_Y, angle);
  35. Quaternion alignWithUp = Quaternion::getRotationFromTo(Vector3::UNIT_Y, up);
  36. Vector3 right = alignWithUp.rotate(alignWithStart.rotate(Vector3::UNIT_X));
  37. right.normalize();
  38. Vector3 planeNormal = right.cross(up);
  39. mCutoffPlane = Plane(planeNormal, 0.0f);
  40. }
  41. }
  42. bool HandleSliderDisc::intersects(const Ray& ray, float& t) const
  43. {
  44. Ray localRay = ray;
  45. localRay.transform(getTransformInv());
  46. auto intersect = mCollider.intersects(localRay);
  47. if (intersect.first)
  48. {
  49. t = intersect.second;
  50. if (mHasCutoffPlane)
  51. {
  52. auto cutoffIntersect = mCutoffPlane.intersects(localRay);
  53. if (cutoffIntersect.first && cutoffIntersect.second < t)
  54. return false;
  55. }
  56. return true;
  57. }
  58. return false;
  59. }
  60. Vector3 HandleSliderDisc::calculateClosestPointOnArc(const Ray& inputRay, const Vector3& center, const Vector3& up,
  61. float radius, Degree startAngle, Degree angleAmount)
  62. {
  63. Vector3 arcBasis[3];
  64. arcBasis[1] = up;
  65. arcBasis[1].orthogonalComplement(arcBasis[2], arcBasis[0]);
  66. Matrix4 worldToPlane = Matrix4::IDENTITY;
  67. worldToPlane.setColumn(0, (Vector4)arcBasis[0]);
  68. worldToPlane.setColumn(1, (Vector4)arcBasis[1]);
  69. worldToPlane.setColumn(2, (Vector4)arcBasis[2]);
  70. worldToPlane.setColumn(3, (Vector4)worldToPlane.multiplyAffine(-center));
  71. worldToPlane[3][3] = 1;
  72. Plane plane(up, (-center).dot(up));
  73. Vector3 pointOnPlane;
  74. auto intersectResult = plane.intersects(inputRay);
  75. float t = 0.0f;
  76. if (intersectResult.first)
  77. pointOnPlane = inputRay.getPoint(intersectResult.second);
  78. else
  79. pointOnPlane = Vector3::ZERO;
  80. pointOnPlane = worldToPlane.multiplyAffine(pointOnPlane);
  81. Vector2 pointOnPlane2D(pointOnPlane.x, pointOnPlane.z); // y always 0
  82. Vector2 closestPoint2D;
  83. float dist = pointOnPlane2D.length();
  84. if (dist > 0.0f)
  85. closestPoint2D = mRadius * (pointOnPlane2D / dist);
  86. else
  87. closestPoint2D = Vector2(mRadius, 0);
  88. Radian angle = Math::atan2(-closestPoint2D.y, -closestPoint2D.x) + Math::PI;
  89. float angleRad = angle.valueRadians();
  90. float angleAmountRad = Math::clamp(angleAmount.valueRadians(), 0.0f, Math::PI * 2);
  91. float startAngleRad = startAngle.wrap().valueRadians();
  92. float endAngleRad = startAngleRad + angleAmountRad;
  93. float clampedAngle = angleRad;
  94. if (endAngleRad <= Math::PI * 2)
  95. {
  96. clampedAngle = Math::clamp(angleRad, startAngleRad, endAngleRad);
  97. }
  98. else
  99. {
  100. if (angleRad >= startAngleRad)
  101. clampedAngle = Math::clamp(angleRad, startAngleRad, Math::PI * 2);
  102. else
  103. {
  104. endAngleRad -= Math::PI * 2;
  105. if (angleRad > endAngleRad)
  106. {
  107. if ((startAngleRad - angleRad) > (angleRad - endAngleRad))
  108. clampedAngle = endAngleRad;
  109. else
  110. clampedAngle = startAngleRad;
  111. }
  112. else
  113. clampedAngle = angleRad;
  114. }
  115. }
  116. Vector3 clampedAnglePoint;
  117. clampedAnglePoint.x = Math::cos(clampedAngle) * radius;
  118. clampedAnglePoint.z = Math::sin(clampedAngle) * radius;
  119. return worldToPlane.inverseAffine().multiplyAffine(clampedAnglePoint);
  120. }
  121. Degree HandleSliderDisc::pointOnCircleToAngle(Vector3 up, Vector3 point)
  122. {
  123. Quaternion rot = Quaternion::getRotationFromTo(up, Vector3::UNIT_Y);
  124. Matrix4 worldToPlane = Matrix4::TRS(Vector3::ZERO, rot, Vector3::ONE);
  125. point = worldToPlane.multiplyAffine(point);
  126. return Radian(Math::atan2(-point.z, -point.x) + Math::PI);
  127. }
  128. void HandleSliderDisc::activate(const CameraPtr& camera, const Vector2I& pointerPos)
  129. {
  130. Ray localRay = camera->screenPointToRay(pointerPos);
  131. localRay.transformAffine(getTransformInv());
  132. mStartPosition = calculateClosestPointOnArc(localRay, Vector3::ZERO, mNormal, mRadius, Degree(0.0f), Degree(360.0f));
  133. mStartAngle = pointOnCircleToAngle(mNormal, mStartPosition);
  134. mStartPosition = getTransform().multiplyAffine(mStartPosition);
  135. Vector3 worldNormal = getTransform().multiplyDirection(mNormal);
  136. worldNormal.normalize();
  137. Vector3 toStart = mStartPosition - getPosition();
  138. mDirection = worldNormal.cross(toStart);
  139. mDirection.normalize();
  140. }
  141. void HandleSliderDisc::handleInput(const CameraPtr& camera, const Vector2I& inputDelta)
  142. {
  143. assert(getState() == State::Active);
  144. mCurrentPointerPos += inputDelta;
  145. mDelta = calcDelta(camera, mStartPosition, mDirection, mStartPointerPos, mCurrentPointerPos) * Math::RAD2DEG;
  146. }
  147. }