BsMath.h 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592
  1. //********************************** Banshee Engine (www.banshee3d.com) **************************************************//
  2. //**************** Copyright (c) 2016 Marko Pintera ([email protected]). All rights reserved. **********************//
  3. #pragma once
  4. #include "BsPrerequisitesUtil.h"
  5. #include "BsDegree.h"
  6. #include "BsRadian.h"
  7. namespace BansheeEngine
  8. {
  9. /** @addtogroup Math
  10. * @{
  11. */
  12. /** Utility class providing common scalar math operations. */
  13. class BS_UTILITY_EXPORT Math
  14. {
  15. public:
  16. static Radian acos(float val);
  17. static Radian asin(float val);
  18. static Radian atan(float val) { return Radian(std::atan(val)); }
  19. static Radian atan2(float y, float x) { return Radian(std::atan2(y,x)); }
  20. static float cos(const Radian& val) { return (float)std::cos(val.valueRadians()); }
  21. static float cos(float val) { return (float)std::cos(val); }
  22. static float sin(const Radian& val) { return (float)std::sin(val.valueRadians()); }
  23. static float sin(float val) { return (float)std::sin(val); }
  24. static float tan(const Radian& val) { return (float)std::tan(val.valueRadians()); }
  25. static float tan(float val) { return (float)std::tan(val); }
  26. static float sqrt(float val) { return (float)std::sqrt(val); }
  27. static Radian sqrt(const Radian& val) { return Radian(std::sqrt(val.valueRadians())); }
  28. static Degree sqrt(const Degree& val) { return Degree(std::sqrt(val.valueDegrees())); }
  29. static float invSqrt(float val);
  30. static float sqr(float val) { return val*val; }
  31. static float pow(float base, float exponent) { return (float)std::pow(base, exponent); }
  32. static float exp(float val) { return (float)std::exp(val); }
  33. static float log(float val) { return (float)std::log(val); }
  34. static float log2(float val) { return (float)(std::log(val)/LOG2); }
  35. static float logN(float base, float val) { return (float)(std::log(val)/std::log(base)); }
  36. static float sign(float val);
  37. static Radian sign(const Radian& val) { return Radian(sign(val.valueRadians())); }
  38. static Degree sign(const Degree& val) { return Degree(sign(val.valueDegrees())); }
  39. static float abs(float val) { return float(std::fabs(val)); }
  40. static Degree abs(const Degree& val) { return Degree(std::fabs(val.valueDegrees())); }
  41. static Radian abs(const Radian& val) { return Radian(std::fabs(val.valueRadians())); }
  42. static float ceil(float val) { return (float)std::ceil(val); }
  43. static int ceilToInt(float val) { return (int)std::ceil(val); }
  44. static float round(float val) { return (float)std::floor(val + 0.5f); }
  45. static int roundToInt(float val) { return (int)std::floor(val + 0.5f); }
  46. static float floor(float val) { return (float)std::floor(val); }
  47. static int floorToInt(float val) { return (int)std::floor(val); }
  48. /** Clamp a value within an inclusive range. */
  49. template <typename T>
  50. static T clamp(T val, T minval, T maxval)
  51. {
  52. assert (minval <= maxval && "Invalid clamp range");
  53. return std::max(std::min(val, maxval), minval);
  54. }
  55. /** Clamp a value within an inclusive range [0..1]. */
  56. template <typename T>
  57. static T clamp01(T val)
  58. {
  59. return std::max(std::min(val, (T)1), (T)0);
  60. }
  61. /** Checks is the specified value a power of two. Only works on integer values. */
  62. template <typename T>
  63. static bool isPow2(T val)
  64. {
  65. return (val & (val - 1)) == 0;
  66. }
  67. static bool isNaN(float f)
  68. {
  69. return f != f;
  70. }
  71. /** Compare two floats, using tolerance for inaccuracies. */
  72. static bool approxEquals(float a, float b,
  73. float tolerance = std::numeric_limits<float>::epsilon())
  74. {
  75. return fabs(b - a) <= tolerance;
  76. }
  77. /** Compare two doubles, using tolerance for inaccuracies. */
  78. static bool approxEquals(double a, double b,
  79. double tolerance = std::numeric_limits<double>::epsilon())
  80. {
  81. return fabs(b - a) <= tolerance;
  82. }
  83. /** Compare two 2D vectors, using tolerance for inaccuracies. */
  84. static bool approxEquals(const Vector2& a, const Vector2& b,
  85. float tolerance = std::numeric_limits<float>::epsilon());
  86. /** Compare two 3D vectors, using tolerance for inaccuracies. */
  87. static bool approxEquals(const Vector3& a, const Vector3& b,
  88. float tolerance = std::numeric_limits<float>::epsilon());
  89. /** Compare two 4D vectors, using tolerance for inaccuracies. */
  90. static bool approxEquals(const Vector4& a, const Vector4& b,
  91. float tolerance = std::numeric_limits<float>::epsilon());
  92. /** Compare two quaternions, using tolerance for inaccuracies. */
  93. static bool approxEquals(const Quaternion& a, const Quaternion& b,
  94. float tolerance = std::numeric_limits<float>::epsilon());
  95. /** Calculates the tangent space vector for a given set of positions / texture coords. */
  96. static Vector3 calculateTriTangent(const Vector3& position1, const Vector3& position2,
  97. const Vector3& position3, float u1, float v1, float u2, float v2, float u3, float v3);
  98. /************************************************************************/
  99. /* TRIG APPROXIMATIONS */
  100. /************************************************************************/
  101. /**
  102. * Sine function approximation.
  103. *
  104. * @param[in] val Angle in range [0, pi/2].
  105. *
  106. * @note Evaluates trigonometric functions using polynomial approximations.
  107. */
  108. static float fastSin0(const Radian& val) { return (float)fastASin0(val.valueRadians()); }
  109. /**
  110. * Sine function approximation.
  111. *
  112. * @param[in] val Angle in range [0, pi/2].
  113. *
  114. * @note Evaluates trigonometric functions using polynomial approximations.
  115. */
  116. static float fastSin0(float val);
  117. /**
  118. * Sine function approximation.
  119. *
  120. * @param[in] val Angle in range [0, pi/2].
  121. *
  122. * @note
  123. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastSin0.
  124. */
  125. static float fastSin1(const Radian& val) { return (float)fastASin1(val.valueRadians()); }
  126. /**
  127. * Sine function approximation.
  128. *
  129. * @param[in] val Angle in range [0, pi/2].
  130. *
  131. * @note
  132. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastSin0.
  133. */
  134. static float fastSin1(float val);
  135. /**
  136. * Cosine function approximation.
  137. *
  138. * @param[in] val Angle in range [0, pi/2].
  139. *
  140. * @note Evaluates trigonometric functions using polynomial approximations.
  141. */
  142. static float fastCos0(const Radian& val) { return (float)fastACos0(val.valueRadians()); }
  143. /**
  144. * Cosine function approximation.
  145. *
  146. * @param[in] val Angle in range [0, pi/2].
  147. *
  148. * @note Evaluates trigonometric functions using polynomial approximations.
  149. */
  150. static float fastCos0(float val);
  151. /**
  152. * Cosine function approximation.
  153. *
  154. * @param[in] val Angle in range [0, pi/2].
  155. *
  156. * @note
  157. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastCos0.
  158. */
  159. static float fastCos1(const Radian& val) { return (float)fastACos1(val.valueRadians()); }
  160. /**
  161. * Cosine function approximation.
  162. *
  163. * @param[in] val Angle in range [0, pi/2].
  164. *
  165. * @note
  166. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastCos0.
  167. */
  168. static float fastCos1(float val);
  169. /**
  170. * Tangent function approximation.
  171. *
  172. * @param[in] val Angle in range [0, pi/4].
  173. *
  174. * @note Evaluates trigonometric functions using polynomial approximations.
  175. */
  176. static float fastTan0(const Radian& val) { return (float)fastATan0(val.valueRadians()); }
  177. /**
  178. * Tangent function approximation.
  179. *
  180. * @param[in] val Angle in range [0, pi/4].
  181. *
  182. * @note Evaluates trigonometric functions using polynomial approximations.
  183. */
  184. static float fastTan0(float val);
  185. /**
  186. * Tangent function approximation.
  187. *
  188. * @param[in] val Angle in range [0, pi/4].
  189. *
  190. * @note
  191. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastTan0.
  192. */
  193. static float fastTan1(const Radian& val) { return (float)fastATan1(val.valueRadians()); }
  194. /**
  195. * Tangent function approximation.
  196. *
  197. * @param[in] val Angle in range [0, pi/4].
  198. *
  199. * @note
  200. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastTan0.
  201. */
  202. static float fastTan1(float val);
  203. /**
  204. * Inverse sine function approximation.
  205. *
  206. * @param[in] val Angle in range [0, 1].
  207. *
  208. * @note Evaluates trigonometric functions using polynomial approximations.
  209. */
  210. static float fastASin0(const Radian& val) { return (float)fastASin0(val.valueRadians()); }
  211. /**
  212. * Inverse sine function approximation.
  213. *
  214. * @param[in] val Angle in range [0, 1].
  215. *
  216. * @note Evaluates trigonometric functions using polynomial approximations.
  217. */
  218. static float fastASin0(float val);
  219. /**
  220. * Inverse sine function approximation.
  221. *
  222. * @param[in] val Angle in range [0, 1].
  223. *
  224. * @note
  225. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastASin0.
  226. */
  227. static float fastASin1(const Radian& val) { return (float)fastASin1(val.valueRadians()); }
  228. /**
  229. * Inverse sine function approximation.
  230. *
  231. * @param[in] val Angle in range [0, 1].
  232. *
  233. * @note
  234. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastASin0.
  235. */
  236. static float fastASin1(float val);
  237. /**
  238. * Inverse cosine function approximation.
  239. *
  240. * @param[in] val Angle in range [0, 1].
  241. *
  242. * @note Evaluates trigonometric functions using polynomial approximations.
  243. */
  244. static float fastACos0(const Radian& val) { return (float)fastACos0(val.valueRadians()); }
  245. /**
  246. * Inverse cosine function approximation.
  247. *
  248. * @param[in] val Angle in range [0, 1].
  249. *
  250. * @note Evaluates trigonometric functions using polynomial approximations.
  251. */
  252. static float fastACos0(float val);
  253. /**
  254. * Inverse cosine function approximation.
  255. *
  256. * @param[in] val Angle in range [0, 1].
  257. *
  258. * @note
  259. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastACos0.
  260. */
  261. static float fastACos1(const Radian& val) { return (float)fastACos1(val.valueRadians()); }
  262. /**
  263. * Inverse cosine function approximation.
  264. *
  265. * @param[in] val Angle in range [0, 1].
  266. *
  267. * @note
  268. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastACos0.
  269. */
  270. static float fastACos1(float val);
  271. /**
  272. * Inverse tangent function approximation.
  273. *
  274. * @param[in] val Angle in range [-1, 1].
  275. *
  276. * @note Evaluates trigonometric functions using polynomial approximations.
  277. */
  278. static float fastATan0(const Radian& val) { return (float)fastATan0(val.valueRadians()); }
  279. /**
  280. * Inverse tangent function approximation.
  281. *
  282. * @param[in] val Angle in range [-1, 1].
  283. *
  284. * @note Evaluates trigonometric functions using polynomial approximations.
  285. */
  286. static float fastATan0(float val);
  287. /**
  288. * Inverse tangent function approximation.
  289. *
  290. * @param[in] val Angle in range [-1, 1].
  291. *
  292. * @note
  293. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastATan0.
  294. */
  295. static float fastATan1(const Radian& val) { return (float)fastATan1(val.valueRadians()); }
  296. /**
  297. * Inverse tangent function approximation.
  298. *
  299. * @param[in] val Angle in range [-1, 1].
  300. *
  301. * @note
  302. * Evaluates trigonometric functions using polynomial approximations. Slightly better (and slower) than fastATan0.
  303. */
  304. static float fastATan1(float val);
  305. /**
  306. * Interpolates between min and max. Returned value is in [0, 1] range where min = 0, max = 1 and 0.5 is
  307. * the average of min and max.
  308. */
  309. template <typename T>
  310. static float lerp01(T val, T min, T max)
  311. {
  312. return clamp01((val - min) / std::max(max - min, 0.0001F));
  313. }
  314. /**
  315. * Solves the linear equation with the parameters A, B. Returns number of roots found and the roots themselves will
  316. * be output in the @p roots array.
  317. *
  318. * @param[out] roots Must be at least size of 1.
  319. *
  320. * @note Only returns real roots.
  321. */
  322. template <typename T>
  323. static UINT32 solveLinear(T A, T B, T* roots)
  324. {
  325. if (!approxEquals(A, (T)0))
  326. {
  327. roots[0] = -B / A;
  328. return 1;
  329. }
  330. roots[0] = 0.0f;
  331. return 1;
  332. }
  333. /**
  334. * Solves the quadratic equation with the parameters A, B, C. Returns number of roots found and the roots themselves
  335. * will be output in the @p roots array.
  336. *
  337. * @param[out] roots Must be at least size of 2.
  338. *
  339. * @note Only returns real roots.
  340. */
  341. template <typename T>
  342. static UINT32 solveQuadratic(T A, T B, T C, T* roots)
  343. {
  344. if (!approxEquals(A, (T)0))
  345. {
  346. T p = B / (2 * A);
  347. T q = C / A;
  348. T D = p * p - q;
  349. if (!approxEquals(D, (T)0))
  350. {
  351. if (D < (T)0)
  352. return 0;
  353. T sqrtD = sqrt(D);
  354. roots[0] = sqrtD - p;
  355. roots[1] = -sqrtD - p;
  356. return 2;
  357. }
  358. else
  359. {
  360. roots[0] = -p;
  361. roots[1] = -p;
  362. return 1;
  363. }
  364. }
  365. else
  366. {
  367. return solveLinear(B, C, roots);
  368. }
  369. }
  370. /**
  371. * Solves the cubic equation with the parameters A, B, C, D. Returns number of roots found and the roots themselves
  372. * will be output in the @p roots array.
  373. *
  374. * @param[out] roots Must be at least size of 3.
  375. *
  376. * @note Only returns real roots.
  377. */
  378. template <typename T>
  379. static UINT32 solveCubic(T A, T B, T C, T D, T* roots)
  380. {
  381. static const T THIRD = (1 / (T)3);
  382. T invA = 1 / A;
  383. A = B * invA;
  384. B = C * invA;
  385. C = D * invA;
  386. T sqA = A * A;
  387. T p = THIRD * (-THIRD * sqA + B);
  388. T q = ((T)0.5) * ((2 / (T)27) * A * sqA - THIRD * A * B + C);
  389. T cbp = p * p * p;
  390. D = q * q + cbp;
  391. UINT32 numRoots = 0;
  392. if (!approxEquals(D, (T)0))
  393. {
  394. if (D < 0.0)
  395. {
  396. T phi = THIRD * ::acos(-q / sqrt(-cbp));
  397. T t = 2 * sqrt(-p);
  398. roots[0] = t * cos(phi);
  399. roots[1] = -t * cos(phi + PI * THIRD);
  400. roots[2] = -t * cos(phi - PI * THIRD);
  401. numRoots = 3;
  402. }
  403. else
  404. {
  405. T sqrtD = sqrt(D);
  406. T u = cbrt(sqrtD + fabs(q));
  407. if (q > (T)0)
  408. roots[0] = -u + p / u;
  409. else
  410. roots[0] = u - p / u;
  411. numRoots = 1;
  412. }
  413. }
  414. else
  415. {
  416. if (!approxEquals(q, (T)0))
  417. {
  418. T u = cbrt(-q);
  419. roots[0] = 2 * u;
  420. roots[1] = -u;
  421. numRoots = 2;
  422. }
  423. else
  424. {
  425. roots[0] = 0.0f;
  426. numRoots = 1;
  427. }
  428. }
  429. T sub = THIRD * A;
  430. for (UINT32 i = 0; i < numRoots; i++)
  431. roots[i] -= sub;
  432. return numRoots;
  433. }
  434. /**
  435. * Solves the quartic equation with the parameters A, B, C, D, E. Returns number of roots found and the roots
  436. * themselves will be output in the @p roots array.
  437. *
  438. * @param[out] roots Must be at least size of 4.
  439. *
  440. * @note Only returns real roots.
  441. */
  442. template <typename T>
  443. static UINT32 solveQuartic(T A, T B, T C, T D, T E, T* roots)
  444. {
  445. T invA = 1 / A;
  446. A = B * invA;
  447. B = C * invA;
  448. C = D * invA;
  449. D = E * invA;
  450. T sqA = A*A;
  451. T p = -(3 / (T)8) * sqA + B;
  452. T q = (1 / (T)8) * sqA * A - (T)0.5 * A * B + C;
  453. T r = -(3 / (T)256) * sqA * sqA + (1 / (T)16) * sqA * B - (1 / (T)4) * A * C + D;
  454. UINT32 numRoots = 0;
  455. if (!approxEquals(r, (T)0))
  456. {
  457. T cubicA = 1;
  458. T cubicB = -(T)0.5 * p ;
  459. T cubicC = -r;
  460. T cubicD = (T)0.5 * r * p - (1 / (T)8) * q * q;
  461. solveCubic(cubicA, cubicB, cubicC, cubicD, roots);
  462. T z = roots[0];
  463. T u = z * z - r;
  464. T v = 2 * z - p;
  465. if (approxEquals(u, T(0)))
  466. u = 0;
  467. else if (u > 0)
  468. u = sqrt(u);
  469. else
  470. return 0;
  471. if (approxEquals(v, T(0)))
  472. v = 0;
  473. else if (v > 0)
  474. v = sqrt(v);
  475. else
  476. return 0;
  477. T quadraticA = 1;
  478. T quadraticB = q < 0 ? -v : v;
  479. T quadraticC = z - u;
  480. numRoots = solveQuadratic(quadraticA, quadraticB, quadraticC, roots);
  481. quadraticA = 1;
  482. quadraticB = q < 0 ? v : -v;
  483. quadraticC = z + u;
  484. numRoots += solveQuadratic(quadraticA, quadraticB, quadraticC, roots + numRoots);
  485. }
  486. else
  487. {
  488. numRoots = solveCubic(q, p, (T)0, (T)1, roots);
  489. roots[numRoots++] = 0;
  490. }
  491. T sub = (1/(T)4) * A;
  492. for (UINT32 i = 0; i < numRoots; i++)
  493. roots[i] -= sub;
  494. return numRoots;
  495. }
  496. static const float POS_INFINITY;
  497. static const float NEG_INFINITY;
  498. static const float PI;
  499. static const float TWO_PI;
  500. static const float HALF_PI;
  501. static const float DEG2RAD;
  502. static const float RAD2DEG;
  503. static const float LOG2;
  504. };
  505. /** @} */
  506. }