BsHandleSliderDisc.cpp 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181
  1. #include "BsHandleSliderDisc.h"
  2. #include "BsHandleManager.h"
  3. #include "BsHandleSliderManager.h"
  4. #include "BsRay.h"
  5. #include "BsVector3.h"
  6. #include "BsQuaternion.h"
  7. #include "BsCamera.h"
  8. // DEBUG ONLY
  9. #include "BsDebug.h"
  10. namespace BansheeEngine
  11. {
  12. const float HandleSliderDisc::TORUS_RADIUS = 0.1f;
  13. HandleSliderDisc::HandleSliderDisc(const Vector3& normal, float radius, bool fixedScale)
  14. :HandleSlider(fixedScale), mRadius(radius), mNormal(normal), mDelta(0.0f), mHasCutoffPlane(false)
  15. {
  16. mCollider = Torus(normal, radius, TORUS_RADIUS);
  17. HandleSliderManager& sliderManager = HandleManager::instance().getSliderManager();
  18. sliderManager._registerSlider(this);
  19. }
  20. HandleSliderDisc::~HandleSliderDisc()
  21. {
  22. HandleSliderManager& sliderManager = HandleManager::instance().getSliderManager();
  23. sliderManager._unregisterSlider(this);
  24. }
  25. void HandleSliderDisc::setCutoffPlane(Degree angle, bool enabled)
  26. {
  27. mHasCutoffPlane = enabled;
  28. if (mHasCutoffPlane)
  29. {
  30. Vector3 up = mNormal;
  31. Quaternion alignWithStart = Quaternion(-Vector3::UNIT_Y, angle);
  32. Quaternion alignWithUp = Quaternion::getRotationFromTo(Vector3::UNIT_Y, up);
  33. Vector3 right = alignWithUp.rotate(alignWithStart.rotate(Vector3::UNIT_X));
  34. right.normalize();
  35. Vector3 planeNormal = right.cross(up);
  36. mCutoffPlane = Plane(planeNormal, 0.0f);
  37. }
  38. }
  39. bool HandleSliderDisc::intersects(const Ray& ray, float& t) const
  40. {
  41. Ray localRay = ray;
  42. localRay.transform(getTransformInv());
  43. auto intersect = mCollider.intersects(localRay);
  44. if (intersect.first)
  45. {
  46. t = intersect.second;
  47. if (mHasCutoffPlane)
  48. {
  49. auto cutoffIntersect = mCutoffPlane.intersects(localRay);
  50. if (cutoffIntersect.first && cutoffIntersect.second < t)
  51. return false;
  52. }
  53. return true;
  54. }
  55. return false;
  56. }
  57. Vector3 HandleSliderDisc::calculateClosestPointOnArc(const Ray& inputRay, const Vector3& center, const Vector3& up,
  58. float radius, Degree startAngle, Degree angleAmount)
  59. {
  60. Vector3 arcBasis[3];
  61. arcBasis[1] = up;
  62. arcBasis[1].orthogonalComplement(arcBasis[2], arcBasis[0]);
  63. Matrix4 worldToPlane = Matrix4::IDENTITY;
  64. worldToPlane.setColumn(0, (Vector4)arcBasis[0]);
  65. worldToPlane.setColumn(1, (Vector4)arcBasis[1]);
  66. worldToPlane.setColumn(2, (Vector4)arcBasis[2]);
  67. worldToPlane.setColumn(3, (Vector4)worldToPlane.multiplyAffine(-center));
  68. worldToPlane[3][3] = 1;
  69. Plane plane(up, (-center).dot(up));
  70. Vector3 pointOnPlane;
  71. auto intersectResult = plane.intersects(inputRay);
  72. float t = 0.0f;
  73. if (intersectResult.first)
  74. pointOnPlane = inputRay.getPoint(intersectResult.second);
  75. else
  76. pointOnPlane = Vector3::ZERO;
  77. pointOnPlane = worldToPlane.multiplyAffine(pointOnPlane);
  78. Vector2 pointOnPlane2D(pointOnPlane.x, pointOnPlane.z); // y always 0
  79. Vector2 closestPoint2D;
  80. float dist = pointOnPlane2D.length();
  81. if (dist > 0.0f)
  82. closestPoint2D = mRadius * (pointOnPlane2D / dist);
  83. else
  84. closestPoint2D = Vector2(mRadius, 0);
  85. Radian angle = Math::atan2(-closestPoint2D.y, -closestPoint2D.x) + Math::PI;
  86. float angleRad = angle.valueRadians();
  87. float angleAmountRad = Math::clamp(angleAmount.valueRadians(), 0.0f, Math::PI * 2);
  88. float startAngleRad = startAngle.wrap().valueRadians();
  89. float endAngleRad = startAngleRad + angleAmountRad;
  90. float clampedAngle = angleRad;
  91. if (endAngleRad <= Math::PI * 2)
  92. {
  93. clampedAngle = Math::clamp(angleRad, startAngleRad, endAngleRad);
  94. }
  95. else
  96. {
  97. if (angleRad >= startAngleRad)
  98. clampedAngle = Math::clamp(angleRad, startAngleRad, Math::PI * 2);
  99. else
  100. {
  101. endAngleRad -= Math::PI * 2;
  102. if (angleRad > endAngleRad)
  103. {
  104. if ((startAngleRad - angleRad) > (angleRad - endAngleRad))
  105. clampedAngle = endAngleRad;
  106. else
  107. clampedAngle = startAngleRad;
  108. }
  109. else
  110. clampedAngle = angleRad;
  111. }
  112. }
  113. Vector3 clampedAnglePoint;
  114. clampedAnglePoint.x = Math::cos(clampedAngle) * radius;
  115. clampedAnglePoint.z = Math::sin(clampedAngle) * radius;
  116. return worldToPlane.inverseAffine().multiplyAffine(clampedAnglePoint);
  117. }
  118. Degree HandleSliderDisc::pointOnCircleToAngle(Vector3 up, Vector3 point)
  119. {
  120. Quaternion rot = Quaternion::getRotationFromTo(up, Vector3::UNIT_Y);
  121. Matrix4 worldToPlane = Matrix4::TRS(Vector3::ZERO, rot, Vector3::ONE);
  122. point = worldToPlane.multiplyAffine(point);
  123. return Radian(Math::atan2(-point.z, -point.x) + Math::PI);
  124. }
  125. void HandleSliderDisc::activate(const CameraHandlerPtr& camera, const Vector2I& pointerPos)
  126. {
  127. Ray localRay = camera->screenPointToRay(pointerPos);
  128. localRay.transformAffine(getTransformInv());
  129. mStartPosition = calculateClosestPointOnArc(localRay, Vector3::ZERO, mNormal, mRadius, Degree(0.0f), Degree(360.0f));
  130. mStartAngle = pointOnCircleToAngle(mNormal, mStartPosition);
  131. mStartPosition = getTransform().multiplyAffine(mStartPosition);
  132. Vector3 worldNormal = getTransform().multiplyAffine(mNormal);
  133. Vector3 toStart = mStartPosition - getPosition();
  134. mDirection = worldNormal.cross(toStart);
  135. mDirection.normalize();
  136. }
  137. void HandleSliderDisc::handleInput(const CameraHandlerPtr& camera, const Vector2I& inputDelta)
  138. {
  139. assert(getState() == State::Active);
  140. mCurrentPointerPos += inputDelta;
  141. mDelta = calcDelta(camera, mStartPosition, mDirection, mStartPointerPos, mCurrentPointerPos) * Math::RAD2DEG;
  142. }
  143. }